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Program code

In the following the program code, which was written in the context of this Masterthesis, is
listed and differentiated from the programs, which were used but not programmed by the
author:

written by Markus Dutschke in the context of this Masterthesis:

• DMFT loop: as described in 1.4

• CT-QMC solver: as described in 3

• different shell scripts used for job handling on ALCC and on local computers

written by others:

• fast Fourier transformation: written by Junya Otsuki, 2009, Dept. of Physics, Tohoku
University, Sendai, Japan

• analytic continuation (maxent): implemented by Mark Jarrell and J.E. Gubernatis,
1990 following [5, 27]
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Abstract

Strongly correlated electron systems provide a large variety of interesting phenomena includ-
ing superconductivity, quantum information or quantum computing that triggers an intense
interest towards correlated electron materials. The prototype models of correlated electron
systems are the Hubbard and the Kondo models and it is known that these models are in
general not solvable analytically. The difficulty steam from the none perturbative nature
of these problems, and existing analytical solutions are always bases on serious simplifica-
tions [9, 11]. A very efficient method, suitable to describe these kind of systems is the so
called Dynamical Mean Field Theory (DMFT). DMFT is based on the mapping of the many-
particles/orbitals Hubbard model into a single impurity Anderson Model. In the pioneering
work of Metzner and Vollhardt [24] it is shown that the Hubbard model is exactly solvable in
the limit of infinite coordination number z. For the Hubbard model in a face-centered cubic
lattice at three dimensions the number of nearest neighbours is z = 12 and even though z
is finite DMFT provides a useful solution. The systematic increase in computational power
contributed significantly to the development and the success of DMFT.

A recent development in the field of correlated electrons materials is the combination of
DMFT with the Density Functional Theory (DFT) [18]. DFT provides the realistic materials
input while the problem of the interactions between electrons is solved within DMFT. In
such a combined approach the weakly coupled/correlated electrons (on s,p orbitals) are
treated using DFT and the strongly correlated electrons (on d or f orbitals) are treated
using DMFT.

This work will focus on the description of strongly correlated electrons using DMFT. From
a technical point of view DMFT was formulated in a close set of self-consistent equations, in
which the most important step - the impurity solver - is non trivial. There are several im-
purity solvers available, which use different methods and are efficient in different parameter
regimes. In the followings a brief list of different solvers is presented:

• Iterative Perturbation Theory (IPT): historically one of the first solvers, that imple-
ments the computation of the second-order self-energy.

• Numerical Renormalization Group (NRG): is an accurate and broadly used zero tem-
perature solver, extension for finite temperatures being available.

• Hirsch-Fye Quantum Monte Carlo (HF-QMC): very extensively used solver for models
with few orbitals, prior to the invention of the continuous time version. Its computa-
tional complexity increases for multiband systems and low temperatures considerably.
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• Continuous-time Quantum Monte Carlo (CT-QMC): an improved solver using QMC.
Low temperatures and multi-orbitals are accessible. Runtime and precision continu-
ously adjustable.

• Exact Diagonalisation (ED): exact solver, but limited due to the dimension of the
Hilbert space. efficient and precise for small systems

More recent solvers implement DMRG, PEPS....

The usual QMC procedure consists in statistical sampling of terms derived from a perturba-
tive expansion. There are several ways to perform the perturbative expansion. Expanding
upon the interaction gives rise to the method called interaction expansion CT-QMC(-INT).
Another option is the auxiliary field expansion which is a technique developed starting from
the HF-QMC. The present work deals with the technicalities, fundamental concepts and
the implementation of a Continuous-Time Quantum Monte Carlo (CT-QMC) solver in hy-
bridisation expansion (CT-HYB), together with the application of the Hubbard model in
magnetic field at half-filling. The thesis is structured as follows:

In the 1. Chapter, the cavity construction is discussed as the key concept used for the
mapping of the lattice model into a single impurity. The formulation of the effective action
is given and the concepts of bath green’s function/Weiss field, local Green’s function are
introduced. These quantities are essential for the derivation of the self-consistent set of
Dynamical Mean Field Theory equations. The consequence of a finite number of Matsubara
frequencies is the presence of high energy tails of the Green’s function and/or self-energy.
This problem is also discussed in this chapter in connection to the computation of the number
of particles.

In the 2. Chapter the solution of the single Anderson impurity model is presented. For
the analytic solution the equation of motion technique is used. For the sake of simplicity the
hybridization expansion is illustrated on the spinless single impurity Anderson model using
the technique called the segment picture. The corresponding extension including spin and
magnetic field is also presented. At the end of the chapter the evaluation of the one particle
(Green’s function) and two particle (susceptibility) correlation function is discussed.

Chapter 3 deals with the practical implementation of CT-QMC algorithm. The essentials
of the Monte Carlo scheme are introduced the metropolis and the detailed balance condition
are discussed. The updating processes are described in detail, such as the fast update
scheme together with many computational details and testing aspects of the code. The
analytic solution from Chapter 2 as well as the technicalities turned out to be essential for
testing purposes.

The numerical results for the Hubbard model in magnetic field at half-filling are presented
in Chapter 4. These are the original results of the thesis and are compared with the paper
of Bauer et. al. [3]. The effective mass enhancement as a function of the applied field is
discussed. A good agreement with the results using the NRG method of Bauer et. al. [3] is
obtained.
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1. Introduction to DMFT

The Hubbard model is a quantum mechanical model to describe interacting electrons on a
lattice. In its simple form it describes the competition between the kinetic energy correspond-
ing to the hopping and a local interaction. The kinetic energy corresponds to the hopping
process from one lattice site to another. Suppressing the interaction-term, the Hubbard
model becomes the usual tight binding model known from solid state physics, characterized
by the hopping amplitude t. The hopping amplitude between neighbouring sites represents
physically the overlap between the atomic orbitals, centered on the neighbouring sites. The
electronic interaction in the Hubbard model is modelled by the so-called on-site repulsion
U, when two electrons happen to be on the same lattice site. For fermionic systems, due to
the Pauli principle, there can only be 2 electrons with opposite spins per lattice site. So in
the single band Hubbard model electrons with the same spin can never interact while in the
multiband Hubbard models such interaction is present.

The Hubbard model can only be solved analytically in special limits and in one dimension [9].
Being a lattice model the number of sites considered on the lattice is limited by the dimension
of the Hilbert space. Stochastic methods, based on Monte Carlo sampling for the lattice
problem, exist and may provide exact solutions. However for very low temperatures and large
system sizes the computational effort increases siginificantly. Alternatively, the Hubbard
model can also be studied using Dynamical Mean Field Theory (DMFT) which becomes
exact in the limit of infinite connectivity z [10]. The DMFT scheme maps self-consistently
the lattice problem into a single site Anderson impurity model (SIAM), and in this way
simplifies the problem considerably. The SIAM consists of only one lattice site (the impurity)
and a non interacting bath coupled to it. The impurity is one of the lattice sites of the lattice
model. The bath models the presence of all lattice sites and the hopping into and outof the
impurity. Particles can jump from the bath on the lattice site with a hybridisation term V
and interact there with a particle with opposite spin (single orbital case). The interaction
is again represented by the same U parameter. The Pauli principle holds here as well and
restricts the maximum number of particles on this impurity to one, for each spin in the
single orbital case.

As the impurity model is in general easier to solve using numerical methods (this is called
the impurity solver), one can calculate the Green function on this impurity. The local
approximation of DMFT states that this impurity Green function is equal to the local
Green function of the lattice.

In many examples the single orbital Hubbard model is considered on a Bethe lattice. The
Bethe lattice, also called "Cayley tree", is a lattice with infinite connectivity, which results in
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a semicircular non interacting density of states with bandwidth D = 2t. The non-interacting
density of states serves as an input parameter for the simulations performed.

1.1. Cavity method

The following derivation is similar to [11–13, 15, 17, 28]. The cavity method describes the
mapping of a lattice problem to a single site in a mean field. The basic idea is, that we take
one special lattice site (site 0) and integrate out all other degrees of freedom in the partition
function. By this we derive an effective action and the "Weiss field".

First we start with the Hubbard Hamiltonian

Ĥ = −
∑

<i,j>,σ

ti,j ĉ
†
i,σ ĉj,σ +

∑
i

Un̂i,↑n̂i,↓ −
∑
i

µ (n̂i,↑ + n̂i,↓) . (1.1)

with

ti,j = tj,i ∈ R (1.2)

(needed for a hermitian Hamiltonian, ti,j ∈ C is only needed if a magnetic vector potential
is included into the Hamiltonian) and

∑
<i,j> denoting the sum over all pairs of lattice sites

(counting each pair only once in contrast to
∑

i,j).

The partition function then writes

Z =

∫ ∏
i

Dc∗i,σDci,σe
−S (1.3)

(where c and c∗ are Grassmann numbers) with the corresponding action [6]

S =

β∫
0

dτ

[∑
i,σ

c∗i,σ(τ)

(
∂

∂τ
− µ

)
ci,σ(τ)−

∑
i,j,σ

ti,jc
∗
i,σ(τ)cj,σ(τ) +

∑
i

Uni,↑(τ)ni,↓(τ)

]
.

(1.4)

Now we split the contributions to the action up into 3 parts:

S = S0 +∆S + S(0). (1.5)

S0 is called the cavity part, ∆S is called the exchange part and S(0) is called the cavity-
lattice part (which is the lattice with the cavity removed).

S0 =

β∫
0

dτ

[∑
σ

c∗0,σ(τ)

(
∂

∂τ
− µ

)
c0,σ(τ) + Un0,↑(τ)n0,↓(τ)

]
(1.6)
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describes all processes, which are restricted to site 0,

∆S = −
β∫

0

dτ

[∑
i,σ

ti,0c
∗
i,σ(τ)c0,σ(τ) + t0,ic

∗
0,σ(τ)ci,σ(τ)

]
(1.7)

describes all exchange processes between site 0 and the other sites,

S(0) =

β∫
0

dτ

[∑
i ̸=0,σ

c∗i,σ(τ)

(
∂

∂τ
− µ

)
ci,σ(τ) −

∑
i ̸=0,j ̸=0,σ

ti,jc
∗
i,σcj,σ(τ)+

+
∑
i ̸=0

Uni,↑(τ)ni,↓(τ)

]
(1.8)

describes all processes, which are not related to site 0. Further we define the ensemble
average (of the cavity-lattice) as

⟨X⟩(0) ≡
1

Z(0)

∫ ∏
i̸=0,σ

Dc∗i,σDci,σXe−S(0)

; Z(0) =

∫ ∏
i̸=0,σ

Dc∗i,σDci,σe
−S(0)

. (1.9)

To get now the effective action Seff , we integrate out all the cavity-lattice degrees of freedom.
We start with the definition of the effective action by the ensemble averager and introduce
a random expression X, which only depends on c∗0,σ and c0,σ:

⟨X⟩eff
!
= ⟨X⟩ with X = X(c∗0,σ,c0,σ)⇔ (1.10)

1

Zeff

∫ ∏
σ

Dc∗0,σDc0,σXe−Seff
!
=

1

Z

∫ ∏
i,σ

Dc∗i,σDci,σXe−S (1.11)

=
1

Z

∫ ∏
σ

Dc∗0,σDc0,σXe−S0

∫ ∏
i̸=0,σ

Dc∗i,σDci,σe
−∆S−S(0)

(1.12)

=
Z(0)

Z

∫ ∏
σ

Dc∗0,σDc0,σXe−S0⟨e−∆S⟩(0). (1.13)

The effective action follows as

Seff = S0 + ln⟨e−∆S⟩(0). (1.14)

We express ⟨e−∆S⟩(0) by its Taylor series. The odd powers of the Taylor expansion of e−∆S

do not contribute, as we have an odd number of cavity-lattice operators (i.e. c∗i,σ or ci,σ).
The ensemble average for odd parameters hence yields 0.

⟨e−∆S⟩(0) =
∞∑
n=0

⟨(−∆S)n⟩(0)
n!

=
∞∑
n=0

⟨(∆S)2n⟩(0)
(2n)!

. (1.15)
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Further we use the following statement:

A : (∆S)2n =
2n∑

m=0

(
2n
m

)
(−1)n−m

∫
dτ1 . . . dτmdτ

′
1 . . . dτ

′
2n−m

∑
i1,...,im,j1,...,j2n−m

× t0,i1 . . . t0,imtj1,0 . . . tj2n−m,0

× c∗0(τ1) . . . c
∗
0(τm) c0(τ

′
1) . . . c0(τ

′
2n−m)

× ci1(τ1) . . . cim(τm)c
∗
j1
(τ ′1) . . . c

∗
j2n−m

(τ ′2n−m) (1.16)

≡
2n∑

m=0

(
2n
m

)
(−1)n−mF 2n

m . (1.17)

Here F 2n
m is used as an abbreviating notation, which will only be used in the proof of this

statement.
For simplicity we dropped the spin index σ. This can be done, as the hopping is spin inde-
pendent. This convention will hold until equation (1.24), where we reintroduce σ again.

This statement can be shown via induction. For clearness lengthly proofs are written with a margin
and in a smaller font size.
First we show the n = 1 case:

(−∆S)2

=

β∫
0

dτi

[∑
i

ti,0c
∗
i (τi)c0(τi) + t0,ic

∗
0(τi)ci(τi)

] β∫
0

dτj

∑
j

tj,0c
∗
j (τj)c0(τj) + t0,jc

∗
0(τj)cj(τj)


=

β∫
0

dτidτj
∑
i,j

[
ti,0tj,0c

∗
i (τi)c0(τi)c

∗
j (τj)c0(τj) + ti,0t0,jc

∗
i (τi)c0(τi)c

∗
0(τj)cj(τj)

+ t0,itj,0c
∗
0(τi)ci(τi)c

∗
j (τj)c0(τj) +t0,it0,jc

∗
0(τi)ci(τi)c

∗
0(τj)cj(τj)]

=− F 2
0 + 2F 2

1 − F 2
2 .

For the induction step we use the following relations:

F 2n
m · F 2

0 = F 2(n+1)
m ; F 2n

m · F 2
1 = F

2(n+1)
m+1 ; F 2n

m · F 2
2 = F

2(n+1)
m+2 ,
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which are easily verifiable. Now, we can proof the assumption.

(−∆S)2(n+1) =(−∆S)2n(−∆S)2
A
=

2n∑
m=0

(
2n
m

)
(−1)n−mF 2n

m ·
(
−F 2

0 + 2F 2
1 − F 2

2

)
=

2n∑
m=0

(
2n
m

)
(−1)n+1−mF 2(n+1)

m +
2n∑

m=0

(
2n
m

)
(−1)n−m2F

2(n+1)
m+1

+
2n∑

m=0

(
2n
m

)
(−1)n+1−mF

2(n+1)
m+2

=
2n∑

m=0

(
2n
m

)
(−1)n+1−mF 2(n+1)

m +
2n∑

m=1

(
2n

m− 1

)
(−1)n−(m−1)2F 2(n+1)

m

+
2n∑

m=2

(
2n

m− 2

)
(−1)n−(m−2)F 2(n+1)

m

=

(
2n
0

)
(−1)n+1−0F

2(n+1)
0 +

[(
2n
1

)
+ 2

(
2n
0

)]
(−1)n+1−1F

2(n+1)
1

+

2n∑
m=2

[(
2n
m

)
+ 2

(
2n

m− 1

)
+

(
2n

m− 2

)]
(−1)n+1−mF 2(n+1)

m

+

[(
2n
2n

)
+

(
2n

2n− 1

)]
(−1)n+1−(2n+1)F

2(n+1)
2n+1 +

[(
2n
2n

)]
(−1)n−2(n+1)F

2(n+1)
2(n+1)

=

(
2(n+ 1)

0

)
(−1)n+1−0F

2(n+1)
0 +

[(
2(n+ 1)

1

)]
(−1)n+1−1F

2(n+1)
1

+

2n∑
m=2

[(
2(n+ 1)

m

)]
(−1)n+1−mF 2(n+1)

m +

[(
2(n+ 1)
2n+ 1

)]
(−1)n+1−(2n+1)F

2(n+1)
2n+1

+

[(
2(n+ 1)
2(n+ 1)

)]
(−1)n+1−2(n+1)F

2(n+1)
2(n+1)

=

2(n+1)∑
m=0

(
2(n+ 1)

m

)
(−1)n+1−mF 2(n+1)

m

If we take the ensemble average, only the term with m = n survives. Note again, that τn, τ ′n
denote imaginary times and in,jn denote lattice sites and the spin on those lattice sites.
These quantities are independent of each other even if they have the same index.

⟨e−∆S⟩(0) =
∞∑
n=0

(−1)n

(n!)2

∫
dτ1 . . . dτndτ

′
1 . . . dτjn

∑
i1,...,in,j1,...,jn

× t0,i1 . . . t0,in · tj1,0 . . . tjn,0 · c∗0(τ1) . . . c∗0(τn) · c0(τ ′1) . . . c0(τ ′n)
×G

(0)
i1,...,in,j1,...,jn

(τ1, . . . ,τn,τ
′
1, . . . ,τ

′
n) (1.18)

with

G
(0)
i1,...,in,j1,...,jn

(τ1, . . . ,τn,τ
′
1, . . . ,τ

′
n) ≡ (−1)n⟨ci1(τ1) . . . cin(τn)c∗j1(τ

′
1) . . . c

∗
jn(τ

′
n)⟩(0). (1.19)

G(0) is the n particle Green function of the system with the cavity excluded.
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According to the the linked cluster theorem [1,23] it follows:

Seff =S0 −
∞∑
n=1

∑
i1,...,jn

∫
dτ1 . . . dτndτ

′
1 . . . dτ

′
n

× t0,i1 . . . t0,intj1,0 . . . tjn,0 c
∗
0(τ1) . . . c

∗
0(τn) c0(τ

′
1) . . . c0(τ

′
n)

× (−1)nG(0),c
i1,...,in,j1,...,jn

(τ1, . . . ,τn,τ
′
1, . . . ,τ

′
n) (1.20)

where G(0),c
... denotes the connected n particle Greensfunction on the cavity-lattice.

1.2. Limit of infinite dimensions

The non-trivial scaling of the hopping parameter was first found by Metzner and Vollhardt
in 1989 [24]. According to [11,28] the hopping parameter ti,j scales with ti,j ∝ 1√

2d
|i−j| , where

d is the number of dimensions.
An argument for that scaling works as follows: Let P be the probability, that an electron
hops on site x (it does not matter from where). We can split P up in different hopping
processes, according to the number of lattice sites ∆i, that have to be passed. In the
following we consider only hopping processes of order ∆i:

P =
∑
∆i

P∆i. (1.21)

Each P∆i combines the hopping processes from all the neighbours with distance ∆i to site x
(we will call those neighbouring sites i(∆i)). Because of translation invariance all hopping
amplitudes are the same. We call the hopping amplitude t∆i. The number of neighbours is
of order (2d)∆i. So it follows

P∆i =
∑
i(n)

|ti(n),x|2 ∝ (2d)∆i|t∆i|2 (1.22)

With P∆i being of order 1 we get directly:

t∆i ∝ (2d)−
∆i
2 . (1.23)

From that other scaling properties follow:

•
∑

ix
∝ d∆i;

∑
jx
∝ d∆i; ix, jx are site indices, because these are the number of

neighbors in the considered distance.

• G
(0)
i1,...,jn

= (−1)n⟨ci1(τ1) . . . c∗jn(τ
′
n)⟩(0) ∝ 1

(2d)∆i(2(n−1)+1) with every index a different lat-
tice site.
This follows from the fact, that for every c/c∗ in the average, there has to be a c∗/c
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from the expansion of the exponential function e−S(0) . Otherwise the term would van-
ish in the cavity-lattice average. With every set of c∗i cj from the expansion, there also
gets a factor ti,j into the term. In the case with the highest contribution to Seff (i.e.
lowest number of t... factors), i and j are both nearest neighbours to site 0. 1 The
power of 2(n − 1) + 1 is a combinatoric issue, because we consider connected Green
functions here. 2(n− 1)+1 is the minimal number of terms, which is needed from the
expansion of e−S(0) to produce a connected Green function, as illustrated in figure 1.1.

ci1 ci2 cin−1 cin

cj1 cj2 cjn−1 cjn

ti1,i2c
∗
i1
ci2

t
i
2 ,j

1 c ∗i
2 c

j
1

t
i
3 ,j

2 c ∗i
3 c

j
2

t
i
n
−
1 ,j

n
−
2 c ∗i

n
−
1 c

j
n
−
2

t
in

,j
n c ∗in c

j
n

Figure 1.1.: Schematic picture of the lowest-order (in ti,j) connected diagram. Each of the
2(n− 1) + 1 lines contributes a factor ti,j as well as a c∗a and a cb to get an even
number of operators for each lattice site.

From that it follows, that the contribution to Seff , which has a n-particle Green function,
is proportional to d∆i(1−n).

For the case, that two lattice sites are equal, this result stays the same, as there is a factor d∆i from
the sums and a factor 1

d∆i from the Green function less. The argument for more than two lattice sites
being the same works analogue.

We see, that in the limit of infinite dimensions only the n = 1 contribution survives and the
effective action results to:

Seff = −
∑
σ

β∫
0

dτ1dτ2 c
∗
0,σ(τ1)G−1

σ (τ1 − τ2)c0,σ(τ2) +

β∫
0

dτ Un0,↑(τ)n0,↓(τ) (1.24)

G−1
σ (τ1 − τ2) = −

(
d

dτ1
− µ

)
δτ1,τ2 −

∑
i,j

ti,0t0,jG
(0)
i,j,σ(τ1 − τ2)

≡ −
(

d

dτ1
− µ

)
δτ1,τ2 −∆(τ1 − τ2). (1.25)

1Therefore they have Manhattan distance 2 to each other (the case, that i and j denote the same lattice
site is discussed later). This is the reason, why the square root is missing.
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G−1
σ is called the Weiss field. We also reintroduced the spin index σ. We have now an

1-particle Green function included. As we have spin conservation at every vertex, we get
the condition σi = σj. Hence we introduce just one index σ for that.

1.3. Local approximation

So far we derived an effective action Seff equation (1.25), which contains only a single particle
Green function. Unfortunately the effective action depends on the cavity-lattice Green
function G(0).The problem with the cavity-lattice Green function is, that it represents the
lattice without the cavity and still does not allow to solve the problem. The task is now,
to express the cavity-lattice Green function by better accessible quantities. In the limit of
infinite dimensions the cavity Green function can also be expressed as

G
(0)
i,j,σ = Gi,j,σ −

Gi,0,σG0,j,σ

G0,0,σ

. (1.26)

This expression was derived by Hubbard [15, 17]. 2 So the difference between the Green
function of the lattice without the cavity and the lattice with the cavity, are all paths which
go through site 0. Because of the d → ∞ limit only paths are considered, which pass site
0 once. To avoid counting the paths entering and leaving site 0 twice, we need the factor

1
G0,0,σ

.

We Fourier transform the Weiss field (equation (1.25)) with respect to the time domain 3

f(τ) =
∑
ωn

f(iωn)e
−iωnτ ; δτ1,τ2 =

∑
ωn

e−iωn(τ1−τ2). (1.27)

The Weiss field in Matsubara domain hence reads

G−1
σ (iωn) =iωn + µ−

∑
i,j

ti,0t0,jG
(0)
i,j,σ(iωn) (1.28)

=F−1(iωn) + Σσ(iωn)−∆(iωn) (1.29)

with

F−1(iωn) ≡ iωn + µ− Σσ(iωn) (1.30)

∆(iωn) ≡
∑
i,j

ti,0t0,jG
(0)
i,j,σ(iωn). (1.31)

2 The proof is based on the key points:
a) the Green function can be expressed in terms of an inverse Hamilton matrix
b) the equation hence becomes a matrix equation, where the index (0) means, that a row and a column
are set to zero
c) a similar method like the one to derive (3.34) can be used.

3 Here we have a discrete Fourier series, due to the fact, that the Green function is only defined on the
interval τ1 − τ2 ∈ [−β;β]. The discrete set of Matsubara frequencies (ωn = 2nπ/β (bosons); ωn =
(2n+ 1)π/β (fermions)) follows from the symmetry G(τ + β) = ±G(τ) [4].
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We note that the Weiss field does not depend on the self-energy Σ, as this is added and
subtracted at the same time. ∆ has already been defined in imaginary time domain (1.25);
for reasons of simplicity the definition is repeated.

A crucial point here is that we assumed the self-energy to be local (i.e. momentum k
-independent)

Σσ(k,iωn) = Σσ(iωn). (1.32)

This, so called local approximation, holds in the limit d→∞ for any order of perturbation
[11,28].

With (1.26) we can express ∆(iωn) in terms of lattice Green functions instead of cavity-
lattice Green functions:

∆(iωn) =
∑
i,j

ti,0t0,jGi,j,σ(iωn)−

(∑
i ti,0Gi,0,σ(iωn)

)(∑
j t0,jG0,j,σ(iωn)

)
G0,0,σ(iωn)

. (1.33)

We will express the terms of this equation in dependence of F−1(iωn) and G0,0,σ(iωn). We do so by
switching to k-space, as the Green function Gk,σ(iωn) just depends on F−1(iωn) and ϵk in this space
(L represents the number of possible momenta): 4

Gi,j,σ(iωn) =
1

L

∑
k

eik(Ri−Rj)Gk,σ(iωn) (1.34)

Gk,σ(iωn) =
1

F−1(iωn)− ϵk
(1.35)

ϵk =
∑
i

ti,0e
−ikRi =

∑
j

t0,je
ikRj (1.36)

ϵ−k =
∑
i

ti,0e
−i(−k)Ri =

∑
i

t0,ie
ikRi = ϵk using (1.2) (1.37)

ti,j =
1

L

∑
k

ϵke
ik(Ri−Rj) (1.38)

4 We remember the following relations: 1
L

∑
k 1 = 1 and

∑
k ϵk = 0.
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∑
i

ti,0Gi,0,σ(iω) =
∑
i

(
1

L

∑
ki

ϵkie
ikiRi

) 1

L

∑
kj

Gkj ,σe
ikjRi


=

1

L2

∑
i,ki,kj

ϵkiGkje
i(ki+kj)Ri =

1

L2

∑
ki,kj

ϵkiGkjδki,−kj

=
1

L

∑
kj

ϵ−kjGkj =
1

L

∑
k

ϵkGk,σ (1.39)

=
1

L

∑
k

(
ϵk − F−1(iωn)

F−1(iωn)− ϵk
+

F−1(iωn)

F−1(iωn)− ϵk

)
=− 1 + F−1(iωn)

1

L

∑
k

Gk,σ(iωn) (1.40)

=− 1 + F−1(iωn)G0,0,σ(iωn) (1.41)

∑
j

t0,jG0,j,σ(iω) =
∑
j

(
1

L

∑
ki

ϵkie
iki(−Rj)

)(
1

L

∑
kl

Gkl,σe
ikl(−Rj)

)
= . . . analogue . . . = −1 + F−1(iωn)G0,0,σ(iωn) (1.42)

∑
i,j

ti,0t0,jGi,j(iωn) =
∑
j

t0,j
∑
i

ti,0

(
1

L

∑
ki

Gki,σe
iki(Ri−Rj)

)

=
1

L

∑
ki

Gki,σ(iωn)
∑
j

t0,je
iki(−Rj)

∑
i

ti,0e
ikiRi (1.43)

=
1

L

∑
ki

Gki,σ(iωn)ϵkiϵki (1.44)

=
1

L

∑
k

ϵk(ϵk − F−1(iωn))

F−1(iωn)− ϵk
+

F−1(iωn)ϵk
F−1(iωn)− ϵk

(1.45)

=0 + F−1(iωn)
1

L

∑
k

ϵkGk,σ

(1.41)
= − F−1(iωn) + F−1(iωn)

2G0,0,σ(iωn) (1.46)

and get

∆(iωn) =− F−1(iωn) + F−1(iωn)
2G0,0,σ(iωn)−

(
−1 + F−1(iωn)G0,0,σ(iωn)

)2
G0,0,σ(iωn)

(1.47)

=F−1(iωn)−G−1
0,0,σ(iωn). (1.48)

It follows the Dyson-like equation for the Weiss field:

G−1
σ (iωn) = G−1

0,0,σ(iωn) + Σσ(iωn). (1.49)

We managed in this way, to express the Weiss field in terms of the local lattice Green
function and the self-energy. Equation (1.49) relates these three quantities in exactly the
same way to each other, like the Dyson equation does.

Gnon int.
0,0,σ

−1
(iωn) = G−1

0,0,σ(iωn) + Σσ(iωn). (1.50)
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We introduced the Weiss field to subsume the contributions to the effective action by propa-
gation processes on the cavity; now we can deduce, that the Weiss field is the non-interacting
local lattice Green function of the Hubbard model

Gnon int.
0,0,σ (iωn) = Gσ(iωn). (1.51)



1.4. DMFT scheme 19

1.4. DMFT scheme

DosU=0,
nfinal

start:
(1.60)

converged
end: (1.62)

∆(m)(iωn),

ϵ
(m)
f

CT
-Q

M
C G

(m)
f (iωn)

(1.56)

F (m)(iωn)

(1.57)

G(m)(iωn)

(1.82)

n(m)

m → m+ 1

(1.58),
(1.61)

Figure 1.2.: numerical scheme of the implementation of the DMFT loop.

1.4.1. Set of self-consistent equations

In the following all impurity quantities are denoted by an index . . .f the lattice quantities
have no additional index. G(f) denotes the non-correlated (U = 0) Green function on the
cavity (impurity).

To achieve a self consistent DMFT loop, we start with an initial guess for the hybridisation
function in the lattice model (1.60). The effective action, we achieve

Seff = −
∑
σ

β∫
0

dτ1dτ2c
∗
0,σ(τ1)G−1

σ (τ1 − τ2)c0,σ(τ2) +
∑
σ

β∫
0

dτUn0,↑(τ)n0,↓(τ) (1.52)

G−1
σ (iωn) = iωn + µ−∆(iωn) (1.53)
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is the same as in the Single Impurity Anderson Model (SIAM) with the Hamiltonian (1.1)
with integrated out bath degrees of freedom. The comparison of Seff of both models yield
the following relation between the parameters of the Hubbard model and the SIAM:

ϵf,σ =− µ (1.54)

|V |2 =
∫

ω2Dos(ω) dω −
(∫

ωDos(ω) dω

)2

, (1.55)

where we used Dos(ω′) =
∑

k δ(ω
′ − ϵk). The hybridisation function ∆f of the SIAM, as

defined in (2.55), is then equal to the hybridisation function of the Hubbard model ∆.

The next step is called the "impurity solver". 5 The purpose of all impurity solvers is to
derive some correlated quantity (Gimp or Σ) from some non-correlated quantity (like ∆f or
Gf) in the impurity model.

To show how Ff is constructed from the impurity Green function and the hybridisation
function, we start with the definition of Ff,σ(iωn) ≡ 1

iωn+µ−Σf,σ(iωn)
. We put in there the

Dyson equation, which defines the self-energy Σ ≡ G−1 + G−1
f . Then we use the analytic

solution of the non-interacting SIAM G−1 = iωn + µ −∆ (proven in equation (2.24)6) and
yield

Ff,σ(iωn) =
1

G−1
f,σ(iωn) + ∆(iωn)

. (1.56)

The problem is now, that we have to get back to the lattice quantities. This can be done
by the local approximation of the self-energy Σf,σ(iωn) ≡ Σσ(iωn), which is demonstrated in
perturbation theory in [11,25,28] As a consequence the quantity F (iωn) = iωn+µ−Σσ(iωn) =
iωn+µ−Σf,σ(iωn) = Ff(iωn) is now the same in both models. According to (1.48) the lattice
Green function is

Gσ(iωn) ≡ G0,0,σ(iωn) =

∫
Dos(ω)

F−1
σ (iωn)− ω

dω. (1.57)

The hybridisation function now follows from (1.48)

∆(iωn) = F−1
σ (iωn)−G−1

σ (iωn). (1.58)

Now we arrived back at the beginning and have the necessary input for the impurity solver
again.

5 There are several impurity solvers available like IPT, NRG, HF-QMC, CT-QMC, exact diagonalisation,
... . Those are usable for different parameter regimes like, zero or finite temperature, etc. (for details
compare 1). We will later use a CT-QMC solver, which derives the correlated impurity Green function
Gf(iωn) from the hybridisation function ∆(iωn).

6Gf = Gf as this prove is based on a non-interacting Hamiltonian
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1.4.2. Initialisation

To begin the self consistency loop, we have to choose a suitable starting point. According
to equation (1.44), we choose the hybridisation function to be

∆(iωn) =
1

L

∑
ki

ϵki
Gki,σ(iωn)ϵki

≈ 1

L

∑
ki

ϵ2ki
Gσ(iωn) (1.59)

=

∫
Dos(ω)ω2dωGσ(iωn) ≈

∫
Dos(ω)ω2dω gc(iωn), (1.60)

where the interaction lattice Green function G is approximated by the non interacting one gc
(for details compare 2.55). We remember, that the purpose of this is not to do an accurate
approximation, but to find a casual initial value for the hybridisation function.

1.4.3. Mixing

To stabilize this self consistent loop, we use something called mixing. The use of this is to
prevent the system from diverging immediately and to support convergence. This is done
by mixing the old and the new hybridisation function to achieve the hybridisation function
for the next iteration.

∆(m)(iωn) = m∆(new) + (1−m)∆(m−1) (1.61)

1.4.4. Convergence

Convergence is established, if there is no more significant change in Gf(iωn) and G(iωn)
compared to the run before. For the results presented in this thesis the convergence criteria

||G(m)
f −G

(m−1)
f || ≡

∞∑
n=0

|G(m)
f (iωn)−G

(m−1)
f (iωn)| = O(10−4) (1.62)

was used.

The whole scheme for the implementation of the DMFT loop can be seen in figure 1.2.

1.5. Particle number

To perform computations away from half filling (compare sec. 1.6), it is important to
calculate the average occupation number ⟨n⟩ on the lattice. We can adjust the chemical
potential afterwards in such a way, that we achieve the wanted filling. We are going to
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derive ⟨n⟩ from the Green function in the Matsubara domain Ḡ(iωn), which is already
computed in the DMFT self consistency loop. We begin with the definition of the counting
operator and switch to its representation in imaginary time. η denotes a sufficiently small
finite number 7 .

⟨n⟩ = ⟨ĉ†ĉ⟩ = −⟨Tτ ĉ(−η)ĉ†(0)⟩ ≡ Ḡ(τ = −η) = 1

β

∑
n

Ḡ(iωn)e
iωnη (1.63)

In general the problem is solved at this point already, but from a numerical point of view
some issues remain open. The first is, that we store only positive Matsubara frequencies but
have to sum up over all Matsubara frequencies. This can be cured by the relation

Ḡ(z) = Ḡ∗(z∗)⇒ (1.64)
Re
{
Ḡ(iωn)

}
= Re

{
Ḡ(−iωn)

}
(1.65)

Im
{
Ḡ(iωn)

}
= −Im

{
Ḡ(−iωn)

}
. (1.66)

So we change the summation to positive n. The reason for the addition and subtraction of
1
ωn
i will become important later, as this is the high frequency limit of the Green function.

⟨n⟩ = 1

β

∑
n

(
Ḡ(iωn) +

1

ωn

i

)
eiωnη +

1

β

∑
n

1

iωn

eiωnη (1.67)

=
1

β

∑
n≥0

[(
Ḡ(iωn) +

1

ωn

i

)
eiωnη +

(
Ḡ(−iωn) +

1

−ωn

i

)
e−iωnη

]
+

1

β

∑
n

1

iωn

eiωnη

(1.68)

=
1

β

∑
n≥0

[
Re
{
Ḡ(iωn)

} (
eiωnη + e−iωnη

)
+ i

(
Im
{
Ḡ(iωn)

}
+

1

ωn

)(
eiωnη − e−iωnη

)]
+

1

β

∑
n

1

iωn

eiωnη (1.69)

A more subtle point is that we can sum up only over a finite number of Matsubara frequencies
NMats. As η is very small and NMats is finite, it follows 8 :

eiωnη ≈ 1 ≈ e−iωnη for n ≤ NMats. (1.71)

Unfortunately the Green function does not vanish fast enough for large n, so that the
contribution of the parts we can not store numerically, is not negligible. For n > NMats we
can express the Green function by its high frequency limit

Ḡ(iωn>NMats
) ≈ − 1

ωn

i. (1.72)

7 The limes lim
η→0

is not performed here.
8 the following condition is fulfilled if

0 < η ≪ β

(2NMats + 1)π
=

1

ωNMats

. (1.70)

This is always guaranteed, as we choose η to be sufficiently small.
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Re

Im

bc

C∞

−C0

0∫
−∞

dRe {z}

−∞∫
0

dRe {z}

This is the high energy tail of the Green function. Because η is finite, for very large |n|
the tails of negative and positive iωn do not cancel out

n→∞ : Ḡ(iωn) = −
1

ωn

ieiωnη ̸= −
(
− 1

−ωn

ie−iωnη

)
= −Ḡ(−iωn). (1.73)

To handle this issue we subtracted and added the high energy tail in (1.69) before. So
we achieved, that the first summand in (1.69) vanishes for large n and the tail handling is
treated separately in the second summand.

The second term can be shown to give −1
2
:

Therefore we use Cauchy’s integral formula and get

1

β

∑
n

1

iωn

eiωnη = − 1

2πi

∮
C

1

1 + eβz
1

z
eηzdz, (1.74)

where C denotes a complex integration contour, which includes all Matsubara frequencies
but not the point z = 0. 9. We then simplify the integration contour to a counterclockwise
circle C∞ with infinite radius and a clockwise circle −C0 with infinitely small radius around
0.

9This formula can be proven by the Cauchy theorem and L’Hospital’s rule. An introduction, how to handle
summation over Matsubara frequencies can be found in [4]
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=− 1

2πi

∮
C∞

+

∮
−C0

 1

1 + eβz
1

z
eηz dz (1.75)

=− 1

2πi

 lim
r→∞

π∫
−π

+ lim
r→0

−π∫
π

 ieηr cosϕeiηr sinϕ

1 + eβr cosϕeiβr sinϕ
dϕ. (1.76)

In the limes r →∞ the integrand converges to 10

lim
r→∞

ieηr cosϕeiηr sinϕ

1 + eβr cosϕeiβr sinϕ
∝

{
lim
r→∞

1
e(β−η)r cosϕ = 0 for cosϕ > 0

lim
r→∞

eηr cosϕ = 0 for cosϕ < 0.
(1.77)

Hence the
∮
C∞

contour yields no contribution. The limes r → 0 converges to

lim
r→0

ieηr cosϕeiηr sinϕ

1 + eβr cosϕeiβr sinϕ
=

i

1 + 1
(1.78)

So the integration yields in the end

1

β

∑
n

1

iωn

eiωnη = − 1

2πi

−π∫
π

i
1

2
= +

1

2
. (1.79)

With that result we can go back to the average occupation. We split the sum up into a into
a part ≤ NMats and a part > NMats:

⟨n⟩ (1.80)

=
1

β

NMats∑
n≥0

Re
{
Ḡ(iωn)

} (
eiωnη + e−iωnη

)︸ ︷︷ ︸
=2

+i

(
Im
{
Ḡ(iωn)

}
+

1

ωn

)(
eiωnη − e−iωnη

)︸ ︷︷ ︸
=0



+
1

β

∑
n≥NMats

Re
{
Ḡ(iωn)

}︸ ︷︷ ︸
=0

(
eiωnη + e−iωnη

)
+ i

(
Im
{
Ḡ(iωn)

}
+

1

ωn

)
︸ ︷︷ ︸

=0

(
eiωnη − e−iωnη

)
− 1

2
(1.81)

=
2

β

∑
n≤NMats

Re
{
Ḡ(iωn)

}
+

1

2
. (1.82)

1.6. Particle-hole symmetry transformation for the
Hubbard Hamiltonian

In this section, we will show, that for a Hubbard model a chemical potential of µ = U
2

always
leads to half filling.
10This limes is the reason, why η is set to a small but finite number.
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We repeat the used Hubbard Hamiltonian from (1.1).

ĤHub = −
∑
i,j,σ

ti,j ĉ
†
i,σ ĉj,σ +

∑
i

Un̂i,↑n̂i,↓ −
∑
i

µ (n̂i,↑ + n̂i,↓) . (1.83)

Now we do a particle-hole transformation on this Hamiltonian. From a physical point of
view we replace now the empty states by occupied states and the other way round. From a
mathematical point of view we exchange creation and annihilation operators ĉ†... ↔ ĉ... (and
hence ni,σ ↔ 1− ni,σ). From that follows a particle-hole transformed Hamiltonian

Ĥph =−
∑
i,j,σ

ti,j ĉi,σ ĉ
†
j,σ +

∑
i

U(1− n̂i,↑)(1− n̂i,↓)−
∑
i

µ (2− n̂i,↑ − n̂i,↓) (1.84)

=
∑
i,j,σ

tj,iĉ
†
i,σ ĉj,σ +

∑
i

Uni,↑n̂i,↓ −
∑
i

µ (n̂i,↑ + n̂i,↓) (1.85)

+
∑
i

U(1− ni,↑ − ni,↓)−
∑
i

µ (2− 2ni,↑ − 2ni,↓) . (1.86)

In the second step we used the relation (1.2) in the hopping term. We notice now that due
to the symmetry in the hopping parameters, we can express the particle-hole transformed
Hamiltonian by the original one with ti,j → −ti,j. This transformation yields only one
additional term

Ĥph = ĤHub(ti,j → −ti,j) + (U − 2µ)
∑
i

(1− ni,↑ − ni,↓) , (1.87)

which can be set to zero easily. For µ = U
2

it follows Ĥph = ĤHub(ti,j → −ti,j). Both

Hamiltonians Ĥ ∈
{
ĤHub, ĤHub(ti,j → −ti,j)

}
describe the same filling. The sign of the

hopping parameter is not relevant, as the filling is defined by

⟨nσ⟩ = Tr
(
n̂σe

−βĤ
)
. (1.88)

When we expand the exponential function and calculate the trace only terms with even
powers of ti,j remain, as an odd number of creators or annihilators on any lattice site yields
zero. So the actual result of ⟨n⟩ is the same for the Hubbard Hamiltonian and its particle-
hole transformed. This means the system is half filled for µ = U

2
.
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2. Single impurity Anderson model and
the segment picture

In this chapter we will explain the analytic foundations of the CT-QMC solver for the
SIAM. We will derive an analytic solution for the non-interacting case, which is important for
testing purposes, We will calculate the partition function and introduce a new mathematical
formalism called "segment picture" based on the partition function. The we will explain
how to calculate the Green function and the susceptibility in the segment picture formalism.
The simple nature of the segment picture will enable us to evaluate indefinite sums of
configurations by the Methods presented in chapter 3.

2.1. Analytic solution of the non-interacting SIAM

In the following we will derive an analytic expression for the Greens function on the impurity
Gff(iωn) of the non-interacting SIAM. This helps us to ensure the validity of the numeric
results of the CT-QMC impurity solver without interaction. As will turn out, the interaction
in the CT-QMC algorithm has only influence on minor parts of the whole code. This makes
the analytic result as an important tool for testing.

We begin with some basic operator relations and the Hamiltonian Ĥ of the non-interacting
SIAM.

[âb̂, ĉ] =â{b̂,ĉ} − {â,ĉ}b̂ (2.1)

Ĥ =ϵf f̂
†f̂ +

∑
k

ϵkĉ
†
kĉk +

1√
N

∑
k

(
Vkf̂

†ĉk + V ∗
k ĉ

†
kf̂
)

(2.2)

[Ĥ,f̂ ] =− ϵf f̂ −
1√
N

∑
k

Vkĉk (2.3)

[Ĥ,f̂ †] =ϵf f̂
† +

1√
N

∑
k′

V ∗
k′ ĉ

†
k′ (2.4)

[Ĥ,ĉ†k′ ] =ϵk′ ĉ†k′ +
Vk′
√
N
f̂ † , (2.5)

where N denotes the number of k-points. We will use the explicit form of the commutator
relations [Ĥ, ˆ. . .] later.
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Further we introduce the definitions of the Greens functions

Gff(τ,τ
′) ≡− ⟨Tτ f̂(τ)f̂

†(τ ′)⟩ = Θ(τ − τ ′)⟨−f̂(τ)f̂ †(τ ′)⟩+Θ(τ ′ − τ)⟨f̂ †(τ ′)f̂(τ)⟩ (2.6)

Gkf(τ,τ
′) ≡− ⟨Tτ ĉk(τ)f̂

†(τ ′)⟩ (2.7)

Gkk′(τ,τ ′) ≡− ⟨Tτ ĉk(τ)ĉ
†
k′(τ

′)⟩ . (2.8)

Gff describes the propagation on the impurity, Gkf describes the propagation from the bath
into the impurity (part of the hybridisation processes) and Gkk′ describes the propagation
in the bath.

We continue by equation of motion of Gff :

d

dτ
Gff(τ,τ

′) =−
[
δ(τ − τ ′)⟨f̂(τ)f̂ †(τ ′)⟩+ δ(τ ′ − τ)⟨f̂ †(τ ′)f̂(τ)⟩

]
− ⟨Tτ

df̂(τ)

dτ
f̂ †(τ ′)⟩ (2.9)

=− δ(τ − τ ′)⟨
{
f̂(τ),f̂ †(τ ′)

}
⟩ − ⟨Tτ

df̂(τ)

dτ
f̂ †(τ ′)⟩ . (2.10)

Then we express the time derivative of the f̂ operator by its commutator with the Hamilto-
nian

df̂(τ)

dτ
=
d(eτĤ f̂ e−τĤ)

dτ
= eτĤ

[
Ĥ,f̂

]
e−τĤ . (2.11)

Inserting this into the equation of motion of the Greens function yields

d

dτ
Gff(τ,τ

′) =− δ(τ − τ ′)− ϵfGff(τ,τ
′)− 1√

N

∑
k

VkGkf(τ,τ
′) . (2.12)

Fourier transformation as defined in (2.48) and comparing the coefficients of eiωn leads us
to the first equation of motion in the Matsubara domain:

−iωnGff(iωn) =− 1− ϵfGff(iωn)−
1√
N

∑
k

VkGkf(iωn), (2.13)

where we used G(τ,τ ′) = G(τ − τ ′).

The equations of motion for Gkf and Gkk′ follow in an similar way. Because of that the
reader may follow the description for Gff and use the following formulas for Gkf :

d

dτ ′
Gkf(τ,τ

′) =δ(τ − τ ′)⟨
{
ĉk,f̂

†(τ ′)
}
⟩ − ⟨Tτ ĉk(τ)

df̂ †(τ ′)

dτ ′
⟩ (2.14)

df̂ †(τ)

dτ
=
d(eτĤ f̂ †e−τĤ)

dτ
= eτĤ

[
Ĥ,f̂ †

]
e−τĤ (2.15)

d

dτ ′
Gkf(τ,τ

′) =ϵfGkf(τ,τ
′) +

1√
N

∑
k′

V ∗
k′Gkk′(τ,τ ′) (2.16)

iωnGkf(iωn) =ϵfGkf(iωn) +
1√
N

∑
k′

V ∗
k′Gkk′(iωn) (2.17)
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and for Gkk′ :

d

dτ ′
Gkk′(τ,τ ′) =δ(τ − τ ′)⟨

{
ĉk(τ),ĉ

†
k′(τ

′)
}
⟩ − ⟨Tτ ĉk(τ)

dĉ†k′(τ ′)

dτ ′
⟩ (2.18)

dĉ†k′(τ)

dτ
=
d(eτĤ ĉ†k′e−τĤ)

dτ
= eτĤ

[
Ĥ,ĉ†k′

]
e−τĤ (2.19)

d

dτ ′
Gkk′(τ,τ ′) =δ(τ − τ ′)⟨

{
ĉk(τ),ĉ

†
k′(τ

′)
}
⟩+ ϵk′Gkk′(τ,τ ′) +

1√
N
Vk′Gkf(τ,τ

′) (2.20)

iωnGkk′(iωn) =δk,k′ + ϵk′Gkk′(iωn) +
1√
N
Vk′Gkf(iωn) (2.21)

Now we derived a system of three equations of motion (2.13), (2.17) and (2.21). Each
equation describes the time evolution of a Greens function in the Matsubara domain. Those
can be solved by first solving equations (2.17) and (2.21), which leads to:

Gkf(iωn) =

Vk√
N

1
iωn−ϵk

iωn − ϵf −
∑

k′
Vk′V

∗
k′

N
1

iωn−ϵk′

. (2.22)

By using that with (2.13), we easily get the analytic expression for the Greens function on
the impurity of the non-interacting SIAM.

Gff(iωn) =
1

iωn − ϵf −
∑

k′
Vk′V

∗
k′

N
1

iωn−ϵk′

(2.23)

For a momentum independent hybridisation Vk = V follows further

Gff(iωn) =
1

iωn − ϵf − |V |2gc(iωn)
with ∆(iωn) = |V |2gc(iωn) =

|V |2

N

∑
k′

1

iωn − ϵk′
. (2.24)

This result will be used later to check the validity of the results of the CT-QMC solver
without interaction U = 0.

2.2. Hybridisation expansion of the spinless SIAM

2.2.1. Hybridisation expansion

First we introduce another way of writing the partition function. We start with a Hamilto-
nian of the form

Ĥ = Ĥ0 + Ĥhyb. (2.25)

We will split up e−βĤ by going to the interaction picture and show, that

e−βĤ = Tτe
−βĤ0e−

∫ β
0 Ĥhyb(τ)dτ (2.26)

with Ĥhyb(τ) = e−τĤ0Ĥhybe
τĤ0 . (2.27)
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We start with

e−βĤ = e−β(Ĥ0+Ĥhyb) (2.28)

We introduce time ordering Tτ :
This operator changes the order of he following creation and annihilation operators in such
a way, that a time-wise rising order of the time arguments / indices is established from
right to left. As we describe a fermionic model every permutation of two operators (ĉ or
ĉ†) contributes an additional factor ×(−1). As the terms Ĥ0,τ and Ĥ0,hyb consist of an even
number of operators, there does not arise any minus sign from time ordering.

Tτ is the reason for introducing new indices τi on the operators. These indices have no
physical meaning. Their only purpose is to tag, how the time order operator has to act.

e−βĤ = Tτe
−

∫ β
0 Ĥ0,τ+Ĥhyb,τdτ = Tτe

−
∫ β
0 Ĥ0,τdτe−

∫̂ β

0Hhyb,τdτ (2.29)

Now we expand in Ĥhyb and yield

e−βĤ = Tτe
−

∫ β
0 H0,τdτ

∞∑
n=0

(−1)n

n!

β∫
0

dτ1 . . .

β∫
0

dτn Ĥhyb,τn . . . Ĥhyb,τ1 (2.30)

∗
= Tτe

−
(∫ τ1

0 +
∫ τ2
τ1

+...+
∫ β
τn

)
Ĥ0,τdτ

∞∑
n=0

(−1)n
∫ β

0

dτ1

∫ β

τ1

dτ2 . . .

∫ β

τn−1

dτn

× Ĥhyb,τn . . . Ĥhyb,τ1 . (2.31)

The last step (*) is proven in [8] and [14].1 By time ordering everything by hand, the
time order operator is not necessary anymore. We first put the e

−
∫ τi+1
τi

Ĥ0,τdτ in order and
calculate the integral afterwards to get e−τi+1Ĥ0eτiĤ0 instead. Further we define Ĥhyb(τ) =

eτĤ0Ĥhybe
−τĤ0 .

e−βĤ =
∞∑
n=0

(−1)n
∫ β

0

dτ1

∫ β

τ1

dτ2 . . .

∫ β

τn−1

dτn

× e−βĤ0eτnĤ0Ĥhyb,τne
−τnĤ0eτn−1Ĥ0 . . . e−τ2Ĥ0eτ1Ĥ0Ĥhyb,τ1e

−τ1Ĥ0 (2.32)

= Tτ

∞∑
n=0

(−1)n

n!

∫ β

0

dτ1Ĥhyb(τ1) . . .

∫ β

0

dτnĤhyb(τn) (2.33)

= Tτe
−βĤ0e−

∫ β
0 Ĥhyb(τ)dτ (2.34)

1One may notice at this point, that the contribution for τi = τj to the integral is infinitely small (for the
finite hybridisation function we will use later) and hence not counted, as the time order operator is not
defined then.
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2.2.2. Spinless SIAM

The Hamiltonian of the spinless Anderson model is given by

Ĥ = ϵf f̂
†f̂ +

∑
k

ϵkĉ
†
kĉk︸ ︷︷ ︸

Ĥ0

+
1√
N

∑
k

V f̂ †ĉk +
1√
N

∑
k

V ∗ĉ†kf̂︸ ︷︷ ︸
Ĥhyb

. (2.35)

We dropped the index of V because we will only work with a momentum independent
hybridisation in the following. Ĥ can be split up in a local part Ĥloc, a bath part Ĥbath, a
hybridisation part Ĥhyb and a on-site part Ĥ0:

Ĥloc = ϵf f̂
†f̂ ; Ĥbath =

∑
k

ϵkĉ
†
kĉk; (2.36)

ĤV =
1√
N

∑
k

V f̂ †ĉk ≡ V f̂ †ĉ; Ĥ†
V =

1√
N

∑
k

V ∗ĉ†kf̂ ≡ V ∗ĉ†f̂ ; (2.37)

Ĥ0 = Ĥloc + Ĥbath; Ĥhyb = ĤV + Ĥ†
V. (2.38)

Then we expand the partition function in the hybridisation term. It is necessary to have an
even number of Ĥhyb, because the trace gives zero, otherwise.

Z0 ≡ Tr{e−βĤ0} (2.39)

Z

Z0

=
Tr
{
e−βĤ

}
Z0

=
Tr
{
Tτe

−βĤ0e−
∫ β
0 dτĤhyb(τ)

}
Z0

(
≡ ⟨e−

∫ β
0 dτĤhyb(τ)⟩0

)
(2.40)

=
1

Z0

Tr

{
Tτe

−βĤ0
1

(2k)!

∞∑
k=0

β∫
0

dτ̃2k . . . dτ̃1

(
ĤV(τ̃2k) + Ĥ†

V(τ̃2k)
)
. . .
(
ĤV(τ̃1) + Ĥ†

V(τ̃1)
)}

As the integrand has to consist of the same number of ĤV as Ĥ†
V, there are

(
2k
k

)
terms,

which give a contribution. The resulting pre factor 1
(2k)!

(
2k
k

)
= 1

(k!)2
is replaced by the

new (ordered) integration intervals 2 . Further we renumber the integration indices, so that
the primed indices belong to the annihilation operators on the impurity and get

Z

Z0

=
∞∑
k=0

β∫
0

dτ1

β∫
τ1

dτ2 . . .

β∫
τk−1

dτk

β∫
0

dτ ′1

β∫
τ ′1

dτ ′2 . . .

β∫
τ ′k−1

dτ ′k w(qk) ≡
∑
qk

w(qk). (2.41)

with qk denoting the manifold of all integration / summation variables

(qk) ≡ (k, τ1, τ2, . . . , τk,τ
′
1,τ

′
2, . . . ,τ

′
k). (2.42)

2Compare again: [8] and [14].
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The weight w(qk) dependent of those variables is

w(qk) =
1

Z0

Tr
{
Tτe

−βĤ0Ĥ†
V(τ

′
k)ĤV(τk) . . . Ĥ

†
V(τ

′
1)ĤV(τ1)

}
(2.43)

≡
⟨
TτĤ

†
V(τ

′
k)ĤV(τk) . . . Ĥ

†
V(τ

′
1)ĤV(τ1)

⟩
0

(2.44)

= |V |2k
⟨
Tτ ĉ

†(τ ′k)f̂(τ
′
k)f̂

†(τk)ĉ(τk) . . . ĉ
†(τ ′1)f̂(τ

′
1)f̂

†(τ1)ĉ(τ1)
⟩
0

(2.45)

= |V |2k
Tr
{
e−βĤbathTτ ĉ

†(τ ′k)ĉ(τk) . . . ĉ
†(τ ′1)ĉ(τ1)

}
Tr
{
e−βĤbath

} ·
Tr
{
e−βĤlocTτ f̂(τ

′
k)f̂

†(τk) . . . f̂(τ
′
1)f̂

†(τ1)
}

Tr
{
e−βĤloc

}
≡ |V |2k

⟨
Tτ ĉ

†(τ ′k)ĉ(τk) . . . ĉ
†(τ ′1)ĉ(τ1)

⟩
c

⟨
Tτ f̂(τ

′
k)f̂

†(τk) . . . f̂(τ
′
1)f̂

†(τ1)
⟩
f

(2.46)

The trace was split up by inserting a sum over all possible many particle states. With the
finite temperature Wick theorem [31] 3 the first part can be expressed as

|V |2k
⟨
Tτ ĉ

†(τ ′k)ĉ(τk) . . . ĉ
†(τ ′1)ĉ(τ1)

⟩
c
= det(∆)

with ∆i,j ≡ −|V |2
⟨
Tτ ĉ(τi)ĉ

†(τ ′j)
⟩
c
≡ ∆(τi − τ ′j). (2.47)

∆ is a matrix of dimension k × k, the matrix elements are denoted by ∆i,j. A Fourier
transformation

f(τ) =
1

β

∑
n

f(iωn)e
−iωnτ (2.48)

f(iωn) =

β∫
0

dτf(τ)e+iωnτ (2.49)

of ∆(τ) yields

∆(iωn) ≡
β∫

0

eiωnτ∆(τ)dτ = −
β∫

0

eiωnτ
|V |2

N

∑
k,k′

⟨
ĉk(τ)ĉ

†
k′(0)

⟩
c
dτ (2.50)

= −|V |
2

N

∑
k

β∫
0

eiωnτ
Tr
{
e−βĤbatheτĤbathcke

−τĤbath ĉ†k

}
Tr
{
e−βĤbath

} dτ. (2.51)

We use the definition of time dependent operators (compare equation 2.27) A(τ) =

eτĤ0Ae−τĤ0 with A ∈ {ĉk,ĉ†k}. Because
[
A, f̂ †f̂

]
= 0, it follows A(τ) = eτĤbathAe−τĤbath . As

we evaluate the trace of the creation / annihilation operators of the impurity, we can insert
the projection on special states on the left and the right side of every operator. |k = 0⟩
means "state with momentum k not occupied", |k = 1⟩ means "state with momentum k
occupied".

ĉk → |k = 0⟩⟨k = 0|ĉk|k = 1⟩⟨k = 1| (2.52)

ĉ†k → |k = 1⟩⟨k = 1|ĉ†k|k = 0⟩⟨k = 0| (2.53)
3 The Wick theorem holds because the bath of the SIAM is non-interacting.
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This leads us to

∆(iωn) = −
|V |2

N

∑
k

β∫
0

eiωnτe−τϵkdτ

e−βϵk + 1
=
|V |2

N

∑
k

1

iωn − ϵk
= |V |2

∫
Dos(ϵ)

iωn − ϵ
dϵ (2.54)

≡ |V |2gc(iωn). (2.55)

The ⟨. . .⟩f can be evaluated accordingly to the calculation of ∆(iωn), by projecting on the
occupation number basis. For A ∈ {f̂ , f̂ †} it follows A(τ) = eτĤ0Ae−τĤ0 = eτĤlocAe−τĤloc ,
as
[
A,c†kck

]
= 0. We insert projections on both sides of every operator again, whereupon

|f = 0⟩ means "impurity not occupied" and |f = 1⟩ means "impurity occupied".

f̂ → |f = 0⟩⟨f = 0|f̂ |f = 1⟩⟨f = 1| (2.56)

f̂ † → |f = 1⟩⟨f = 1|f̂ †|f = 0⟩⟨f = 0| (2.57)

With those two relations we get

⟨Tτ f̂(τ
′
k)f̂

†(τk) . . . f̂(τ
′
1)f̂

†(τ1)⟩f

=



⟨f̂(τ ′k)f̂ †(τk) . . . f̂(τ
′
1)f̂

†(τ1)⟩f
= 1

1+e−βϵf

n∏
m=1

e−(τ ′m−τm)ϵf

}
for τ ′k > τ1(no wind)

⟨−f̂ †(τk)f̂(τ
′
k−1)f̂

†(τk−1) . . . f̂(τ
′
1)f̂

†(τ1)f̂(τ
′
k)⟩f

= − e−βϵf

1+e−βϵf

n∏
m=1

e−(τ ′m−τm)ϵf

}
for τ1 ≥ τ ′k(wind)

1
1+e−βϵf

for n = 0(no wind)
0 for non alternating f̂ and f̂ †.

(2.58)

In the wind case τ1 ≥ τ ′k, hence the time order operator shifts τ ′k about 2k − 1 positions
and we get the additional minus sign. When executing the time ordering operator the index
space of the imaginary timepoints τ... and τ ′... has been renamed. After timeordering the
condition τi+1 ≥ τ ′i > τi ∀i ∈ [1,n) is valid. To summarize (2.47) and (2.58) we get

w(qk) =
det(∆)

1 + e−βϵf

n∏
m=1

e−(τ ′m−τm)ϵf ×
{

1 for no wind case
−e−βϵf for wind case (2.59)

2.2.3. Segment picture

This section describes how we translate the imaginary time configurations qk into segment
pictures. By doing so, we can easily calculate the partition function (2.41). The advantage
is, that the segment picture provides a simple way to evaluate the weight of a configuration.
To translate a weight w(qk) into a segment picture, we have to draw the imaginary time scale
from 0 to β. In analogy to the operator order of the trace, β is equal to the left handside
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of the timescale and 0 is equal to the right handside of the timescale. According to this,
we read the segment picture from right to left. In the next step we replace every pair of
creation and annihilation operators on the impurity with a box on the imaginary time scale.
This box is called a segment. The beginning of the box is the position of the creator f †(. . .)
and the end is the position of the annihilator f(. . .) (keep in mind, that we read from right
to left). We yield the transformation

⟨f̂(τ ′k)f̂ †(τk) . . . f̂(τ
′
1)f̂

†(τ1)⟩f ⟨−f̂ †(τk)f̂(τ
′
n−1)f̂

†(τn−1) . . . f̂(τ
′
1)f̂

†(τ1)f̂(τ
′
k)⟩f

for τ ′k > τ1 for τ1 ≥ τ ′k
⇓ ⇓

β 0← τ

. . .

τ1τ ′1τkτ ′k

β 0← τ

. . .

τ1τ ′1τn−1τ ′n−1τk τ ′k

.

(2.60)

Figure 2.1.: Illustration of the transformation from ensemble averages to segment pictures.

According to (2.47) and (2.58) we can determine w(qk) directly from the segment picture.

w(qk) = signwinddet(∆)
e−Lϵf

1 + e−βϵf
(2.61)

Here signwind is +1 for the no wind case and −1 for the wind case. L is the sum of the length
of all segments, whereby the lenght of the n-th segment of the wind case is just β+τ ′k−τk.

All possible configurations for one spin direction:

note: half open segments

Further we remember that the time order operator in 2.2 was not defined for two equal time
points. Therefore we introduce the convention, that the creator position is included and
the annihilator position is excluded from the segment. In this way segments are allowed to
touch each other τ ′n = τn+1, because the physical meaning of the endpoint τ ′n is, that the
corresponding annihilator acts an infinitely small imaginary time unit before. In the segment
picture this means, that the left edge of every segment has to be shifted an infinitesimal
distance to the right.

According to this convention a configuration with n = 1, τ1 = τ ′1 means full occupation on
the whole imaginary time span (with the impurity being not occupied only in the infinitely
small timespan at τ1). A wrong interpretation would be, that the impurity is empty all the
time, but at τ1 it is shortly occupied.
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n = 0 n = 1 n = 2 . . . n =∞
⟨0|0⟩, ⟨1|1⟩ ⟨f̂(τ ′1)f̂ †(τ1)⟩ . . .

β 0 β 0τ ′1 τ1 β 0τ ′2 τ2 τ
′
1 τ1

β 0

β 0τ ′1 τ1 β 0τ ′2τ2 τ ′1τ1

Figure 2.2.: Schematic illustration of the phase space of all possible configurations qk.

β 0← τ

. . .

(
τ ′1; τ1

]
τk
]

;
(
τ ′k

β 0← τ

. . .

(
τ ′1; τ1

]
τn−1

]
;

(
τ ′n−1τk

] (
τ ′k;

Figure 2.3.: Illustration of half open segments

2.3. Single Impurity Anderson Model with spin in a
magnetic field

2.3.1. Incorporation of the spin

The Hamiltonian of the interacting single impurity Anderson model is given by

Ĥspin =
∑
σ

ϵf,σf̂
†
σf̂σ +

∑
k,σ

ϵk,σ ĉ
†
k,σ ĉk,σ︸ ︷︷ ︸∑

σ
Ĥ0,σ

+
1√
N

∑
k,σ

V f̂ †
σ ĉk,σ +

1√
N

∑
k,σ

V ∗ĉ†k,σf̂σ︸ ︷︷ ︸∑
σ

Ĥhyb,σ

+Un̂f,↑n̂f,↓︸ ︷︷ ︸
Ĥint

.

(2.62)

So far the on-site energy on the impurity is the same for both spins: ϵf,σ = ϵf
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β 0← τ τ1

Figure 2.4.: segment picture for n = 1; τ1 = τ ′1 (winded)

If we follow the derivation of section 2.2, we just have to replace:

Ĥ0 →
∑
σ

Ĥ0,σ + Ĥint

Ĥloc→
∑
σ

Ĥloc,σ + Ĥint

(2.63)

Further we have to add a spin index to every operator and every imaginary time
point. The only part that changes is the imaginary time average on the impurity
⟨Tτ f̂(τ

′
k)f̂

†(τk) . . . f̂(τ
′
1)f̂

†(τ1)⟩f . We get an additional factor e−Ulov for the result, with
lov being the imaginary time span of the impurity being doubly occupied. The reason for
that is, that an additional operator e−(τ

∗
1−τ∗2 )Ĥint (τ ∗... are the imaginary time arguments of the

neighbouring operators) appears between the f̂ and f̂ † operators, when we resolve the time
dependence. This term yields e−(τ

∗
1−τ∗2 )U in case of double occupancy and 1 otherwise.

With the incorporation of the spin, we need to adjust the definition of the configuration qk
(2.42):

qk,σ ≡(k,σ, τ1,σ, τ2,σ, . . . , τk,σ,τ ′1,σ,τ ′2,σ, . . . ,τ ′k,σ) (2.64)
qk ≡(qk1,↑, qk2,↓) (2.65)

with k1 + k2 = k.

2.3.2. Incorporation of a magnetic field

We implement now an additional term in our Hamiltonian, which represents a magnetic field
h.

Ĥspin, h = Ĥspin + σhf̂ †
σf̂σ (2.66)

Comparing this with (2.62), we recognize, that the additional therm can be easily included
in the existing Hamiltonian by adjusting the on-site energy

ϵf,σ = ϵf + σh. (2.67)
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2.3.3. Generalized weights

This leads us to the following formula for the weight of a configuration with respect to the
spin [29].

w(qk) = signwind,σsignwind,−σdet(∆)
e−Lσϵf,σ

1 + e−βϵf,σ

e−L−σϵf,−σ

1 + e−βϵf,−σ
e−lovU (2.68)

with lov being the imaginary time span of the impurity being doubly occupied. Due to the
overlap, the weight depends on qk,↑ and qk,↓. Because of the (2.47) matrix elements of ∆,
which refer to different spins, give zero. ∆ has a block diagonal form in the spin sectors and
hence factorizes

det(∆) = det(∆↑)det(∆↓). (2.69)

In practice we will usually consider the ratio of the weights of two configurations. One
spin channel (−σ) of those configurations will be identical. For this reason we introduce a
abbreviating definition:

wσ(qk) ≡ signwind,σdet(∆σ)
e−Lσϵf,σ

1 + e−βϵf,σ
e−lovU (2.70)

with
w(qk)

w(pl)
=

wσ(qk)

wσ(pl)
if qk,−σ = pl,−σ. (2.71)

The weights according to the configuration shown in 2.5 would hence be:

w↑
(
(1, ↑ ,τ1,↑,τ ′1,↑),(1, ↓ ,τ1,↓,τ ′1,↓)

)
= det

(
∆(τ1,↑ − τ ′1,↑)

) e−(τ ′1,↑−τ1,↑)(ϵf+h)

1 + e−β(ϵf+h)
e−(τ ′1,↓−τ1,↑)U

(2.72)

w↓
(
(1, ↑ ,τ1,↑,τ ′1,↑),(1, ↓ ,τ1,↓,τ ′1,↓)

)
= det

(
∆(τ1,↓ − τ ′1,↓)

) e−(τ ′1,↓−τ1,↓)(ϵf−h)

1 + e−β(ϵf−h)
e−(τ ′1,↓−τ1,↑)U .

(2.73)

⟨f̂(τ ′1,↑)f̂(τ ′1,↓)f̂ †(τ1,↑ )f̂
†(τ1,↓ )⟩f

β 0

τ ′1,↑ τ1,↑

τ ′1,↓ τ1,↓

lov

h

Figure 2.5.: Illustration of the segment picture with spin in a magnetic field.
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2.4. Green function

According to [29, 30], the Green function on the impurity can be evaluated directly from
these weights w(qk). Therefore we first introduce the Matrix M, which is the inverse and
transposed of the Matrix ∆ defined in (2.47).

M =
(
∆−1

)T (2.74)

The Green function is then

Gσ(τ) =

∑
qk,σ

− 1
β

∑
n,mM

qk,σ
n,m d(τ,τ ′m − τn)wσ(qk,σ)∑
qk,σ

wσ(qk)
≡

⟨
− 1

β

∑
n,m

M
qk,σ
n,m d(τ,τ ′m − τn)

⟩
σ

d(τ, τ ′m − τn) =

{
δ(τ − (τ ′m − τn)) , (τ ′m − τn) > 0,
−δ(τ − (τ ′m + β − τn)), (τ ′m − τn) < 0.

(2.75)

To evaluate the impurity Green Function, hence means to sum up over all possible (infinitely
many) configurations qk. This problem is faced in 3.1.

As the Green function is discontinuous at τ = 0 and τ = β, we use an alternative way of
measurement at these points. The Green function at τ = 0 + ϵ ≡ 0+ and τ = β − ϵ ≡ β−

with ϵ→ 0 can be expressed by the average occupation number n. From the definition

Gσ(τ) = −
1

β

β∫
0

dτ̃⟨Tτ f̂σ(τ + τ̃)f̂ †
σ(τ̃)⟩ (2.76)

(2.77)

follows

G(0+) = −⟨f̂ f̂ †⟩ = −⟨1− f̂ †f̂⟩ = −1 + n (2.78)

G(β−) = −G(0−) = −⟨f̂ †f̂⟩ = −n. (2.79)

In the following we will see the derivation of equation (2.75). This formula is also derived
in [16]. 4

proof of Green function formula

For simplicity, we drop the index σ at all operators. We keep in mind, that every pair of
creation and annihilation operators at imaginary time points has a additional spin. So τk/τ

′
k

is just an abbreviating version of (τk,σk)/(τ
′
k,σk). τ ′new and τnew obviously have spin σ.

4The additional minus sign compared to these papers arises from the different definition of F (τ) and ∆(τ),
respectively.
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Lets start with the definition of the Green function 5

Gσ(τ
′
new,τnew) ≡ −⟨Tτ f̂(τ

′
new)f̂

†(τnew)⟩ = −
Z0

Z
⟨Tτ f̂(τ

′
new)f̂

†(τnew)e
−

∫ β
0 dτĤhyb(τ)⟩0, (2.80)

with τnew, τ
′
new ∈ (0,β). We introduced the ⟨. . .⟩0-average using 2.34 and 2.40. Then we

follow the arguments leading from 2.40 to 2.46 to do the first transformation:

− Z

Z0

Gσ(τ
′
new,τnew) (2.81)

=
∑
qk

|V |2n⟨Tτ ĉ
†(τ ′k)ĉ(τk) . . . ĉ

†(τ ′1)ĉ(τ1)⟩c⟨Tτ f̂(τ
′
k)f̂

†(τk) . . . f̂(τ
′
1)f̂

†(τ1)f̂(τ
′
new)f̂

†(τnew)⟩f

(2.82)

=
∑
qk

|V |2(n+1)⟨Tτ ĉ
†(τ ′k)ĉ(τk) . . . ĉ

†(τ ′1)ĉ(τ1)ĉ
†(τ ′new)ĉ(τnew)⟩c

× ⟨Tτ f̂(τ
′
k)f̂

†(τk) . . . f̂(τ
′
1)f̂

†(τ1)f̂(τ
′
new)f̂

†(τnew)⟩f

× |V |2n⟨Tτ ĉ
†(τ ′k)ĉ(τk) . . . ĉ

†(τ ′1)ĉ(τ1)⟩c
|V |2(n+1)⟨Tτ ĉ†(τ ′k)ĉ(τk) . . . ĉ

†(τ ′1)ĉ(τ1)ĉ
†(τ ′new)ĉ(τnew)⟩c.

(2.83)

From that point we move the new operators into the time ordered sequence of operators 6 .
For every exchange of two neighbouring creators / annihilators we get an additional factor of
(−1)3 (for example: ĉ†(τ ′1)ĉ(τ1)ĉ

†(τ ′new)ĉ(τnew) = (−1)3ĉ†(τ ′new)ĉ(τ1)ĉ†(τ ′1)ĉ(τnew)). The new
positions of τnew / τ ′new is called n / m, and we get an additional factor of (−1)3(n/m−1) for
the new ordering within the expectation values. The fact, that the new operators have been
moved into the existing set of operators, is symbolized by . . ..

=
∑
qk

|V |2(n+1)⟨Tτ ĉ
†(τ ′k)ĉ(τk) . . . c

†(τ ′new) . . . ĉ(τnew) . . . ĉ
†(τ ′1)ĉ(τ1)⟩̂c (2.84)

× ⟨Tτ f̂(τ
′
k)f̂

†(τk) . . . f̂(τ
′
new) ˆ. . .f

†(τnew) . . . f̂(τ
′
1)f̂

†(τ1)⟩f (2.85)

× |V |2n⟨Tτ ĉ
†(τ ′k)ĉ(τk) . . . ĉ

†(τ ′1)ĉ(τ1)⟩c
(−1)3(n−1)+3(m−1)|V |2(n+1)⟨Tτ ĉ†(τ ′k)ĉ(τk) . . . ĉ

†(τ ′new) . . . ĉ(τnew) . . . ĉ
†(τ ′1)ĉ(τ1)⟩c

(2.86)

=
∑

qk+1(τnew,τ ′new)

w(qk+1(τnew,τ
′
new))

det (∆qk,σ)

det (∆qk+1,σ(τnew,τ ′new))
(−1)n+m (2.87)

Here qk+1,σ(τnew,τ
′
new) denotes a configuration with k+1 creators, k+1 annihilators in spin

channel σ. In this configuration a particle is created on the impurity at imaginary time point
τnew and annihilated at time point τ ′new. A configuration (eventually only one spin channel)
as the upper right index of a matrix ∆ or M denotes, that the matrix is constructed from that

5 In general we would need to introduce spin indices, as the Green function is a spin dependent quantity as
well. For simplicity we just drop them. The only point where the derivation changes, is at the definition
of q(τnew,τ ′new) and q(τ), which considers only operators with the same spin index then. The result does
not change because of this simplification.

6We remember from 2.2, that the τ...’s are time ordered among themselves because of the integration
borders. The same is valid for the τ ′...’s.
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configuration. The index σ occurs in the ratio of the determinants because the determinant
factorizes as shown in (2.69). With equation (3.35) it follows

Gσ(τ
′
new,τnew) = −

Z0

Z

∑
qk+1(τnew,τ ′new)

w(qk+1(τnew,τ
′
new))M

qk+1,σ(τnew,τ ′new)
n,m . (2.88)

Now we go to the Green function with one imaginary time argument. The reader may note,
that τ ∈ (0,β) and G(τ, . . .) = −G(τ − β, . . .).

Gσ(τ) ≡
1

β

β∫
0

dτ̃ Gσ(τ + τ̃ , τ̃) (2.89)

=
1

β

β−τ∫
0

dτ̃ Gσ(τ + τ̃ , τ̃) +
1

β

β∫
β−τ

dτ̃ Gσ(τ + τ̃ , τ̃) (2.90)

=
1

β

β−τ∫
0

dτ̃ Gσ(τ + τ̃ , τ̃)− 1

β

0∫
−τ

dτ̃ Gσ(τ + τ̃ , β + τ̃) (2.91)

=

− 1
β

∑
qno wind
k+1 (τ)

w(qno wind
k+1 (τ))M

qno wind
k+1,σ (τ)

n,m∑
qk

w(qk)
−

− 1
β

∑
qwind
k+1 (τ)

w(qwind
k+1 (τ))M

qwind
k+1,σ(τ)

n,m∑
qk

w(qk)
(2.92)

q......(τ) denotes a configuration , which has at least one creator (at τn) and one annihilator
(at τ ′m) with distance

τ = |τ ′m,τn| ≡
{

τ ′m − τn for τ ′m > τn(no wind)
τ ′m + β − τn for τ ′m < τn(wind). (2.93)

The indices n and m follow from the position of the operators compared to the other oper-
ators of the same kind.
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To be able to sample over all possible configurations
∑
qk

, we use the β-antiperiodic delta

function. 7 Further we use equation (2.70) to reduce the configuration space to one spin
channel.

Gσ(τ) =

∑
qno wind
k

− 1
β

∑
n,m

w(qno wind
k )δ (τ − (τ ′m − τn))M

qno wind
k,σ

n,m∑
qk

w(qk)
(2.94)

−

∑
qwind
k

− 1
β

∑
n,m

w(qwind
k )δ (τ − (τ ′m + β − τn))M

qwind
k,σ

n,m∑
qk

w(qk)
(2.95)

=

∑
qk,σ

− 1
β

∑
n,mM

qk,σ
n,m d(τ,τ ′m − τn)w(qk,σ)∑
qk

w(qk,σ)
(2.96)

with

d(τ, τ ′m − τn) =

{
δ(τ − (τ ′m − τn)) for (τ ′m − τn) > 0
−δ(τ − (τ ′m + β − τn)) for (τ ′m − τn) < 0.

(2.97)

2.5. Susceptibility

The dynamic susceptibility χ is defined as:

χσσ′(τ − τ ′) =⟨Tτ n̂σ(τ)n̂σ′(τ ′)⟩ − ⟨n̂σ⟩⟨n̂σ′⟩ (2.98)

=
1

β

⟨
lov(q

shifted:+τ
k,σ ,qk,σ′)

⟩
− ⟨n̂σ⟩⟨n̂σ′⟩ (2.99)

χch =
∑
σσ′

χσσ′ (2.100)

χsp =
∑
σσ′

σσ′χσσ′ (2.101)

(2.102)

qshifted:+τ
k,σ denotes a configuration of spin channel σ, which is basically qk,σ but every creator

and annihilator shifted with +τ . The dynamic susceptibility describes how the system in
influenced in the future by the current configuration.

The static susceptibility follows from the zero frequency limit of the dynamic susceptibility.
It is a scalar quantity. If the static susceptibility diverges, the system changes its behavior

7 We use a delta function instead of a Koniker delta, as the Green function in imaginary time can numerically
only be stored in an discrete way. We implement the delta function as a rectangular function with heigth
1
δτ and width δτ . δτ denotes the mesh distance in imaginary time domain.
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qualitatively and hence undergoes a phase transition. In the following we will only investigate
the dynamic susceptibility.

The dynamic susceptibility has the following symmetry property, which is the reason, why
it is sufficient to show the 4 channels of χ in the interval [0,β

2
).

χσσ′(τ) = χσ′σ(−τ) = χσ′σ(β − τ) (2.103)

For U = 0 we can compare the results of our simulation to the analytic solution

χσσ′(τ) = ⟨Tτ n̂σ(τ)n̂σ′(0)⟩ − ⟨n̂σ⟩⟨n̂σ′⟩ wick
= −δσσ′G(τ)G(−τ). (2.104)

proof of susceptibility formula

Starting by the definition

χσ,σ′(τ) =
1

β

β∫
0

dτ̃ ⟨Tτ n̂σ(τ + τ̃)n̂σ′(τ̃)⟩ − ⟨n̂σ⟩⟨n̂σ′⟩. (2.105)

We need to look more carefully on the expectation value of the counting operators. By
introducing the sum of all possible configurations qk (qk represents both spin channels σ and
σ′), we get

β∫
0

dτ̃ ⟨n̂σ(τ + τ̃)n̂σ′(τ̃)⟩ =
β∫

0

dτ̃

∑
qk

n̂qk
σ (τ + τ̃)n̂qk

σ′ (τ̃)w(qk)∑
qk

w(qk)
, (2.106)

where n̂qk
σ′ (τ̃) is 1, if qk is a configuration with spin channel σ′ occupied at imaginary time

point τ̃ and 0 otherwise. Then we exchange sum and integral and express the n̂-operators
by the overlap lov of the two spin channels, which is measurable directly:

=

∑
qk

β∫
0

dτ̃ n̂qk
σ (τ + τ̃)n̂qk

σ′ (τ̃)w(qk)∑
qk

w(qk)
=

∑
qk

lov(q
shifted:+τ
k,σ ,qk,σ′)w(qk)∑

qk

w(qk)
(2.107)

≡
⟨
lov(q

shifted:+τ
k,σ ,qk,σ′)

⟩
. (2.108)
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3. Continuous-time quantum Monte
Carlo (CT-QMC) method

As mentioned in the previous chapter Monte Carlo methods are used to evaluate averages
of the type

⟨A⟩ =

∑
qn

Aw(qn)∑
qn

w(qn)
, (3.1)

where
∑
qn

denotes the sum over all possible configurations (phase space), and w(qn) is the

weighting factor of each configuration. 1

As long as there is a limited number of possible configurations qn, we can solve that problem
exactly. But in real systems we get very quickly to such a large number of configurations,
that this is not numerically tractable.

Monte Carlo methods are heuristics, which sample statistically through the configuration
space. On the one side these methods do not consider every possible configuration 2. On
the other side they are quick for complex problems, and the precision is adjustable (by the
number of samples). This sampling is performed by the Metropolis-Hasting algorithm.

After the application of the Metropolis-Hasting algorithm to our problem has been explained,
we will derive the fast update procedure, as it provides an efficient speedup in the context
of CT-QMC. The implementation and architecture of the CT-QMC code are presented to
provide a guideline for the implementation of similar solvers.

3.1. Metropolis(-Hasting) algorithm

The idea of these algorithms is to produce a Markov chain 3 , which represents the ap-
pearance of each configuration according to its weight.

To achieve this we start with a simple example with a two configurations system: We have
1A physical example for this type of average is the partition function.
2Hence it might miss some (important) configuration with a high weight, if it is only accessible by passing

configurations with low weights.
3 For our purposes a Markov chain can be described as a sequence of statistically independent configurations.



3.1. Metropolis(-Hasting) algorithm 43

w1 w2

pacc1→2

pacc2→1

Figure 3.1.: simplest example: detailed balance condition for a two configurations system

a phase space with 2 possible configurations (which are denoted by index x and y), with a
specific weight w. As we are doing a simulation to create a Markov Chain, we need to sample
both configurations, according to they weights. Metropolis algorithms do that by proposing
a transition from the one configuration to the other and accept that proposal with a certain
probability pacc. The tricky task is now to determine pacc in such a way, that the occurrence
of configurations x and y in the Markov chain mirrors their weights. For that we introduce
the detailed balance condition. The idea is to establish some kind of equilibrium to the
system, so that the number of transitions 1→ 2 is equal to the number of transitions 2→ 1,
if one considers the whole Markov chain. From that requirement it follows the condition

w1p
acc
1→2 = w2p

acc
2→1. (3.2)

In this equation we already included the assumption, that the number of occurrences of
configuration 1 / 2 is proportional to its weight. As w1, w2 are given by the physical system,
we have one equation with two unknowns. One can resolve that by the so called Metropolis
choice.

pacc1→2 = min

(
1,
w2

w1

)
. (3.3)

The indices x and y can be exchanged to get the other acceptance probability. This is
especially useful, because we can assign one formula to both acceptance probabilities. This
makes the numerical implementation more straight forward.

This simple example can be generalized to a more complex system with (countable) 4 in-
finitely many configurations. In the new example there are many options to go from con-
figuration x to another one. Because of this, we have to introduce the proposal probability
ppropx→y. If the system is in configuration x, ppropx→y is the probability to decide, to try a transition
x→ y. If the transition is actually performed, depends on the acceptance probability paccx→y.

The detailed balance condition for 2 random configurations x and y is now

wxp
prop
x→yp

acc
x→y = wyp

prop
y→xp

acc
y→x, (3.4)

because the proposal probabilities have to be considered as well. The reader may notice,
that we do not consider circular transitions (x → y → z → x), which may establish an
equilibrium as well. The reason for this is, that things are getting more complicated without
any additional benefit. So we keep things simple and use the most simple condition for a

4 The reader may notice, that we are going to apply this method to the segment picture, which has an
uncountable number of configurations. This is the reason for introducing the transformation (3.6) later.
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wx wy

ppropx→yp
acc
x→y

ppropy→xp
acc
y→xppropx→... ppropy→...

Figure 3.2.: detailed balance condition for a general system

Markov chain that mirrors the weights of the configurations. The Metropolis choice follows
straight forward

paccx→y = min

(
1,
ppropy→x

ppropx→y

wy

wx

)
. (3.5)

We can see, that the acceptance probability depends on the proposal probability and hence
on the proposal process. This detail may cause some misunderstandings.

The difference between the Metropolis and the Metropolis-Hasting algorithm is the proposal
probability:

• Metropolis: ppropx→y = ppropy→x ∀x,y

• Metropolis-Hasting: ∃x,y : ppropx→y ̸= ppropy→x.

3.2. Update processes

As described in the previous chapter we will use the Metropolis-Hasting algorithm to cover
the whole Hilbert space. Because the interval [0,β) on the imaginary time axis is continuous,
we have infinitely many possibilities to go from one configuration to another. As Metropolis-
Hasting is designed for discrete problems, we discretize our interval. 5 When we evaluate the
partition function (2.41), we use the following substitution for each integration in imaginary
time

β∫
0

dτm

β∫
0

τ ′mw(τm,τ
′
m, . . .)→

N∑
i=1

β

N

N∑
j=1

β

N
w(i,j, . . .) (3.6)

From that, we get an additional factor of
(
β
N

)2
for every expansion order.

w(qn)→
(
β

N

)2n

w(qn) (3.7)

5Later we will find out, that this discretization cancels out in the acceptance probabilities which are
calculated according to (3.10), (3.11), (3.12), (3.13) and (3.15).
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This prefactor has to be added to every wnew and wold in this section.

To get from one segment configuration to another we use 5 different update processes (add
segment, remove segment, add antisegment, remove antisegment, shift operator). For er-
godicity (ability to reach every point of the Hilbert space) it would be enough to use just
the processes add and remove segment. The others are just there to increase performance.
The start configuration for the warm up process is ⟨0|1̂|0⟩, with no particle being present
(n = 0). The update processes work as following:

add / remove segment (as / rs)

β

n segments

0 β

n+1 segments

0lmax

ττ ′

add segment

remove segment .

Figure 3.3.: Illustration of the add segment and the remove segment processes

After having decided to add a segment we use the following procedure. First we choose a
random starting point ∈ [0,β). If the starting point τ hits an existing segment, we cancel
the process immediately. 6 If we hit no existing segment, we choose a random endpoint
τ ′ from the interval of our starting point and the starting point of the next segment. The
length of this interval is called lmax. τ ′ ∈ (τ, τ + lmax]. Then we change the numeration
of the segments (according to the way, it is described in section 2.2.3) and evaluate the
new weight. To evaluate the proposal probability for this process we have to consider again
the discretized imaginary time interval. We have a probability of 1

N
of choosing τ and a

probability of 1
lmax
β

N
of choosing τ ′. The probability for deciding to add a segment in the

first place is 1
4

(compare section 3.4). Therefore it follows

ppropas =
β

4lmaxN2
(3.8)

The remove process simply consists of deciding to remove a segment (probability 1
4
) and of

choosing the segment, which shall be removed (probability 1
n+1

).

pproprs =
1

4(n+ 1)
(3.9)

6This is equivalent of putting the weight of the new configuration to zero. wnew = 0



46 3.2. Update processes

According to (3.5) and (3.7) it follows for the acceptance probabilities

paccas = min

(
1,

pproprs wn+1

ppropas wn

)
=

lmaxβ

n+ 1

wn+1

wn

(3.10)

paccrs = min

(
1,

ppropas wn

pproprs wn+1

)
=

n+ 1

lmaxβ

wn

wn+1

(3.11)

Here wn denotes the weight of the configuration with n segments. Further we dropped the
min(1, . . .). Our convention from now on is to accept probabilities > 1 with probability 1.

add / remove antisegment (aa / ra)

β

n segments

0 β

n+1 segments

0lmax

τ τ ′

add antisegment

remove antisegment

Figure 3.4.: Illustration of the add antisegment and the remove antisegment processes

The add and remove antisegment processes work corresponding to the segment processes.
An antisegment is a not occupied area. In the add antisegment process we first decide to
execute that process (prob. 1

4
). Then we choose a random point τ ′ (prob. 1

N
). If we did not

hit a segment, we cancel the process immediately, otherwise we determine lmax, which is the
distance to the next annihilator in this case. From that interval we choose another point τ
(prob. 1

lmax
β

N
). Now we add a hole into the segment, we hit, and change the numeration.

The reverse process of removing an antisegment consists of two steps; first to decide to
remove a antisegment (prob. 1

4
) and then to choose the antisegment which shall be removed.

The probability for that is 1
n+1

, because the number of segments is equal to the number of
antisegments.

So the acceptance probabilities for the antisegent processes are:

paccaa =
βlmax

n+ 1

wn+1

wn

(3.12)

paccra =
n+ 1

βlmax

wn

wn+1

. (3.13)

Here we used the discretization of the imaginary time according to equation (3.7).
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β 0 β 0

n segments n segments

shift operator

"reverse" shift operator

lmax lmax

Figure 3.5.: Illustration of the shift operator process

shift operator (sh / rsh)

When shifting an operator we first choose a segment with a probability 1
n
. After that we

decide if we shall shift the creator or the annihilator of this segment (probability 1
2
). The

new position of the operator is bounded by the positions of the 2 surrounding operators of
the opposite kind. The resulting interval, which is accessible for the new operator position
is lmax. This gives us an additional factor 1

lmax
β

N
.

The reverse process works exactly the same way. Even the length of lmax is equal. Therefore
we get

ppropsh = pproprsh =
β

2nlmaxN
(3.14)

We see that it is not possible to make a distinction between shift and reverse shift processes.

The proposal probabilities cancel out of equation 3.5 and the acceptance probability yields

paccn→n =
wnew

wold
. (3.15)

increasing performance

To increase performance we replace the fraction of the weights by

wnew

wold
= signwind

det(∆new)

det(∆old)
× e−δl ϵf−δovU (3.16)

λ ≡ det(∆new)

det(∆old)
(3.17)

with signwind = 1, if the wind status is the same for the new and the old configuration
and signwind = −1 otherwise. δl denotes the difference of the sum over the length of all
segments δl =

∑
segments new lengthsegment −

∑
segments old lengthsegment. δov denotes the change

of lov, which is the imaginary time span of double occupation on the impurity.
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3.3. Fast update scheme

The equations (2.68) and (2.75) are essentially for sampling through the phase space, for
computing the Green function and hence for solving the SIAM. Unfortunately each contains
a numerically very expensive step, which is the computation of the determinant / the inverse
of a matrix. This costs at least of order nlog27 [26] substantial processes. Hence this is the
speed-limiting part for the CT-QMC algorithm.

The fast update scheme offers a speed up for this. The basic idea is to consider an update
process qoldn → qnewm . Because we already evaluated the weight and the Green function of
the configuration qoldn , we already have the matrices ∆old and Mold. After having evaluated
∆new by adding/removing/changing a row and a column, there are now two options:

• We calculate Mnew form ∆new by matrix inversion.

• We evaluate Mnew from the collective information which are provided by Mold, ∆old

and the new row and the new column. This is called the fast update scheme.

The later choice turns out to use only of order n2 operations and hence offers an important
speedup for the algorithm. The fast update scheme will be explained in this chapter.

We start with the following setup. We have a matrix ∆old and its inverse transposed Mold.
Both have dimension k. The indices on the upper left side of a matrix/vector have the
following meaning: t: top; b: bottom; l: left; r: right and denote a part of the matrix,
which is split because of the inserted row and column.

∆old =


tl∆old tr∆old

bl∆old br∆old

 , Mold =


tlMold trMold

blMold brMold

 (3.18)

We add a column c and a row rT to ∆old, which are also k dimensional vectors. The
intersecting element of the new row and the new column is called rc. The resulting matrix
∆new has dimension (k + 1)× (k + 1).
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∆new =

m

tl∆old

c1
...

cn−1

tr∆old

r1 . . . rm−1 rc rm . . . rk

bl∆old

cn
...
ck

br∆old


n (3.19)

To make the new and the old matrices comparable we introduce ∆̃ and M̃ , which have a
dummy row and column included. The dimension of those matrices is hence (k+1)×(k+1).

∆̃ =

m

tl∆old

0
...
0

tr∆old

0 . . . 0 1 0 . . . 0

bl∆old

0
...
0

br∆old


n (3.20)

M̃ =
(
∆̃−1

)T
=

m

tlMold

0
...
0

trMold

0 . . . 0 1 0 . . . 0

blMold

0
...
0

brMold


n (3.21)
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Further we calculate the difference between the new and the old ∆ matrix

D = ∆new − ∆̃ =

m

0

c1
...

cn−1

0

r1 . . . rm−1 rc− 1 rm . . . rk

0

cn
...
ck

0


n (3.22)

From the definitions of D = ∆new − ∆̃ =
(
Mnew,T

)−1 −
(
M̃T

)−1

follows

Mnew =
(
1̂ + M̃DT

)−1

M̃. (3.23)

This formula is the central formula for the derivation of the fast update scheme. It may look
complicated at the first sight, but the matrix 1̂ + M̃DT is a sparse matrix with very simple
properties:

1̂ + M̃DT =

n

1̂

(
Moldr

)
1...(

Moldr
)
n−1

0

c1 . . . cn−1 rc cn . . . ck

0

(
Moldr

)
n...(

Moldr
)
k

1̂


n . (3.24)

To derive these properties we first define a general matrix of that kind

U ≡

n

1̂

a1
...

an−1

0

b1 . . . bn−1 x bn . . . bk

0

an
...
ak

1̂


n . (3.25)
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The determinant follows by splitting into subdeterminants of dimension k and switching
rows

det (U) =det


x b1 . . . bk
a1
...
ak

1̂

 = x+
k∑

i=1

(−1)iaidet
(

b1 . . . bk
1̂i-th row missing

)

=x+
k∑

i=1

(−1)iai(−1)i−1bi = x− bTa. (3.26)

The inverse of U is7

U−1 =
1

det(U)

n

1̂ + tl
(
abT

) −a1
...

−am−1

1̂ + tr
(
abT

)
−b1 . . . −bm−1 1 −bm . . . −bk

1̂ + bl
(
abT

) −am
...
−ak

1̂ + br
(
abT

)


n . (3.27)

Here abT denotes a Matrix with
(
abT

)
ij
= aibj. Now we have all the properties of 1̂+M̃DT

to derive the fast update scheme.

determinant ratio λ

First we handle the determinant ratio, which is

λ =
det (∆new)

det (∆old)
=

det
(
Mold

)
det (Mnew)

=
(−1)n+mdet

(
M̃
)

1

det(1̂+M̃TD)
det
(
M̃
) = (−1)n+mdet

(
1̂ +DTM̃

)
(3.28)

and we get

λ = (−1)n+m
(
rc− cTMoldr

)
. (3.29)

new inverse transposed matrix Mnew

Next we derive the fast update formular for Mnew. For that we define

λ′ ≡ det
(
1̂ +DTM̃

)
= (−1)n+mλ. (3.30)

7,which can be verified by calculating UU−1 = U−1U = 1
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Hence it follows

Mnew =
(
1̂ + M̃DT

)−1

M̃ (3.31)

=


1̂ +

1

λ′

n

tl
(
MoldrcT

)
t
(
−Moldr

)
tr
(
MoldrcT

)
l
(
−cT

)
1− λ′ r

(
−cT

)
bl
(
MoldrcT

)
b
(
−Moldr

)
br
(
MoldrcT

)

 n


(3.32)

×

m

tl
(
Mold

) 0
...
0

tr
(
Mold

)
0 · · · 0 1 0 · · · 0

bl
(
Mold

) 0
...
0

br
(
Mold

)


n (3.33)

= M̃ +
1

λ′

m

tl
(
LRT

)
t
(
−Moldr

)
tr
(
LRT

)
l
(
−cT

)
1− λ′ r

(
−cT

)
bl
(
LRT

)
b
(
−Moldr

)
br
(
LRT

)

 n (3.34)

with L ≡Moldr; RT ≡ cTMold.
In the last step we made use of the relation

[(
Moldr

)
cT
]
Mold = LRT.

Further we see the relation

Mnew
n,m =

1

λ′ = (−1)n+mλ = (−1)n+m det
(
∆old

)
det (∆new)

. (3.35)

3.4. Code architecture

The general mechanism of the Metropolis-Hasting algorithm has been explained in 3.1. This
section is about the specific implementation of this kind of algorithm.

The first problem we face, when implementing the algorithm is the question: What is the
configuration we start with? There are two concepts of choosing a start configuration. In the
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cold start [20] we use with the simplest possible configuration. In our case is this an empty
segment picture. The alternative option is a hot start. This is done, by either choosing
a random start configuration or by constructing it in such a way, that it has a high weight
compared to the other configurations [20]. We perform a cold start in our simulation.

Independent of what start we choose, we face the problem, that the starting configuration
and the first configurations in the Markov chain might be overweighted, because they appear
at least once. To prevent this issue we use a warm up phase, which consists of ∼ 105

randomly chosen as/rs/aa/ra processes and ∼ 105/4 shift operator processes. We first
perform four as/rs/aa/ra processes and afterwards the shift process, because it might happen
otherwise, that we would remove a segment, which had been just modified by the shift
process. The shift process would have costed time then, without any computational use.

In this phase we do not measure any observables, but only the following quantities:

• average expansion order ⟨k⟩

• average probability to accept a as/rs/aa/ra process

• average probability to accept a shift process

With these quantities we can calculate an estimate for the average number of processes,
which are necessary to change the whole segment picture. This is called the Monte Carlo
step size for the further simulation. In the main part of the Monte Carlo procedure we
measure the observables after each Monte Carlo step, because it ensures a certain degree of
independence of the measurements and avoids the computational effort, which is connected
to the measurement process. In general it would be also correct to measure after every
process, but because of the high correlation of the measurements we would not achieve any
improvement. A rule of thumb for the size of a Monte Carlo step is nMC

i ∝ ⟨k⟩
⟨pacci ⟩ with i = 1

denoting the as/rs/aa/ra processes and i = 2 denoting the shift operator process.

A further issue shows, that Monte Carlo methods are a statistical measurement. This is
compareable of performing a numerical experiment, which has a certain probability to return
the right result, but there are also derivations possible. Like other statistical measurements
the probability for the different possible results is a Gauss distribution around the right result
(expectation value). 8 In figure 3.6 we can see a schematic description of this problem.

To improve the measurement, we can perform more Monte Carlo steps, but we still have
no indication, how precise our result is. To get a quantity for that we just perform several
independent measurements and calculate the average and the standard derivation. So if

8 To ensure, that the data is indeed Gaussian distributed, we protocol the distribution of our measurements.
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probability

resultrealmeasured

Figure 3.6.: result of a statistical Monte Carlo measurement

we measured an observable A before directly, we measure now a set of A1,A2, . . . ,AN in N
independent measurements. From that we can calculate the average

⟨A⟩ = 1

N

N∑
i=1

Ai (3.36)

and the standard derivation

σA =
√
⟨A2⟩ − ⟨A⟩2. (3.37)

By this the precision of the measurement stays the same, because it consists of the same
number of independent samples, but we have an additional indicator for the quality of the
result. A schematic description of this new way of measureing can be found in figure 3.7.
There is a further big advantage of this way of computing. Because of the independence of

probability
no of

measure-
ments

resultreal
b b b b b

b

b

b

b

b b

b

b

b

b
b b b b b

Figure 3.7.: resulting statistic of serveral independent measurements

the measurement process we can parallelize the simulation to N cores. The communication
footprint is very small, because we get communication only after the warm up and at the
end of the simulation. Further we do not need shared memory and hence are not restricted
to the maximum number of core per node on a cluster. The tool I used to implement
the parallelization is the current MPI 3.0 standard with the collective communication
routines.

The full architecture of the Monte Carlo process can be seen in figure 3.8.
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warm up:
∼ 105 trials

⟨pacc1 ⟩1,⟨pacc2 ⟩1,⟨n⟩1

⟨pacc1 ⟩2,⟨pacc2 ⟩2,⟨n⟩2

⟨pacc1 ⟩N ,⟨pacc2 ⟩N ,⟨n⟩N

Metropolis-Hasting:
∼ 108

N measurements

G1(τ), χ1(τ),⟨n⟩1

G2(τ), χ2(τ),⟨n⟩2

GN (τ), χN (τ),⟨n⟩N

n1, n2 N = 20− 40 bins G(τ), χ(τ),⟨n⟩,σ

legend:

process of
measuring

calculated

starting
point

Figure 3.8.: architecture of the CT-QMC process

3.5. Analytic continuation

The purpose of analytic continuation is to calculate the spectral function from the impurity
Green function. There are two different methods available: the maximum entropy method
(maxent) and the pade method. In this work an existing maxent code based on [5, 19, 27]
was used, which calculates the spectral function in real energy domain from the impurity
Green function in imaginary time domain.

A necessary precondition to use maxent is, that the input data is Gaussian distributed. To
ensure that, the code, which was written for this thesis, produces statistical protocols of the
numerical data. In table 3.9 we look at the statistical protocol of the Green function, which
was used to produce figure 4.7. We count therefore all measurements x(τ) of the impurity
Green function in imaginary time domain τ , which are smaller then the average value of
the data⟨X(τ)⟩ plus/minus an integer multiple of the standard derivation σx,τ . This is done
for each τ mesh point independently. The ⟨X(τ)⟩ were computed by 20 parallel processes.
To increase the precision of our analysis we sum up the distributions over all 512 τ mesh
points.

We can see a good agreement of the expected and the measured distribution. Derivations
result from the low sample size of 20 ∗ 512 (not independent) points. This check was also
performed on 200 parallel processes, which gave a better agreement of the measured and
expected distribution. The distribution of each τ mesh point was also Gaussian there. We
did not look at this statistics here, because it does not represent the quality of the maxent
input data, which was used in this work.
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∑
τ

#x(τ) : x(τ) < ⟨X(τ)⟩+ jσx,τ

j = -3 -2 -1 0 1 2 3
expected (in %) 0.2 2.3 15.8 50 84.2 97.7 99.8
h=0.0 (in %) 0.2 2.5 15.8 49.4 84.5 97.9 99.8
h=0.1 (in %) 0.0 1.5 16.9 50.7 83.0 97.7 100.0

h=0.175 (in %) 0.1 2.5 15.0 51.3 83.9 97.6 100.0
h=0.2 (in %) 0.0 1.5 16.9 50.4 84.4 97.8 100.0

Figure 3.9.: quality of the Gaussian distributed input data for the maximum entropy method
used to produce the results, shown in figure 4.7

Attention: Maxent cannot reproduce functions with sharp turning point features such
as the top and the bottom of a semi-circular spectral function. Occurring artefacts are a
flattening / smoothening and an oscillating structure on top of the results in the effected
area. We will observe these features on the spectral functions presented in section 4.

3.6. Problems during implementation

When implementing the CT-QMC algorithm some unexpected problems might occure. Some
of those are very difficult to detect, because they appear very rarely. 9

Double precision

The error of double precision occures due to numerical rounding, after approximately 7 hours
on 16 cores. The fundamentel mechanism, that produces that error is, that in numerics the
following equation is valid:

1 + 10−16 = 1 (3.38)

This results from the maximum span of digits, which can be stored is about 15. When we
already stored 1 in a variable, we can not add 10−16, because it is 16 powers of 10 smaller.

If we create a segment, we first choose a creator position τ in the whole interval τ ∈ [0,β).
Then we determin the interval length lmax and choose a annihilator position τ ′. We do that
by producing a random number r ∈ (0, lmax] according to figure 3.10. Then we add it to the
creator position τ ′ = τ + r.

If lmax is too small, we might end up with choosing a number of order O = 10−16. Together
with O(τ) = 1 we end up with equation (3.38). This means, that instead of getting a τ ′

sightly larger than τ , we get a τ ′ = τ . According to section 2.2.3 this corresponds to a

9A typical runtime for detection is about 100 CPU hours.
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double getRandomDouble ( const double l_max=beta ) {
/∗
∗ r e t u r n s a random d o u b l e b e t w e e n 0 and l_max
∗/

double out=rand ( )∗l_max/RAND_MAX;
return out ;

}

Figure 3.10.: Simple c++ implementation of finding a random number ∈ [0,lmax]. The con-
stant RAND_MAX is of order O = 1010.

segments covering the whole imaginary time interval instead of a very short segment (which
we intended to create). By this we created a not allowed segment picture (compare also
3.11).

a) b)

β 0τ ′1 τ1τ ′2 τ2

τ ′ = τ + 10−16

lmax

β 0τ ′1 τ1τ ′2 τ2

τ ′ → τ

Figure 3.11.: Rounding errors can change a segment configuration qualitatively:
a) annihilator is chosen, which is slightly larger than the creator
b) due to numerical rounding, the annihilator becomes equal to the creator.
This segment is interpreted differently (compare "note: half open segments"
in section 2.2.3) and results in a forbidden segment configuration.

We can prevent this problem by defining a function in c++, which chooses a random number
from a given interval. In this function we can include some asserts to ensure, that the number
we choose is really element of the interval.

Precision of the analytic solution

A further point, which might lead to confusion, is the "precision of the analytic solution".
We keep in mind, that the analytic solution of the SIAM according to (2.24) is only given in
Matsubara domain. Hence, if we want to compare our results according to (2.75), we have
to perform a (Fast) Fourier Transformation. For CT-QMC results with a high precision, the
precision of the FFT has a not neglectablerole, as can be seen in figure 3.12. So if one does
not get results in agreement with the analytic solution, the number of Matsubara frequencies
may be the (non obvious) reason. A high number of Matsubara frequencies has no relevant
influence on the runtime of the code, as the main computational effort derives from the fast
update procedure and in the computation of the susceptibility.
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-0.91
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-0.902

-0.9

-0.898

512 1024 2048 4096 8192 16384 32768 65536
# Matsubara frequencies

Fast Fourier Transformation of analytic solution

down
up

analytic

Figure 3.12.: Change of the analytic solution with the number of mesh points due to Fourier
Transformation: The CT-QMC results stay basically the same, while the an-
alytic solution moves into the error bars of the CT-QMC results with an in-
creasing number of Matsubara frequencies.

3.7. Debugging

Fixed seeds

One problem of debugging a Monte Carlo simulation is the disability to reproduce certain
errors, because we choose random numbers. This means, that problems, which occurred one
run before cannot be investigated further and hence can not be repaired properly. To avoid
that, we can work with fixed seeds. Fixing the seed means, that the initialisation point
of the sequence of random numbers is fixed. Usually one uses an initialisation point, which
depends on the current system time, but in this case we can just set it to the rank of the
process. This helps a lot in finding current problems.

Segment antisegment symmetry

A very important property of the CT-QMC algorithm is the antisymmetric 10 handling of
segments and antisegments. For debugging we can run the simulation twice with the same
seed and input parameters U = 0 and ϵf = 0. One time we start with an empty segment
configuration and allow only the processes add / remove segment, the other time we start
with a full occupied configuration and allow only add / remove antisegment processes. The

10 meaning segments / antisegments have the same position in an unoccupied / occupied environment.
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#de f i n e SEED // s w i t c h e s on t h e f i x e d s e e d mode

// some c o d e

seed=time (NULL)+noOfProc∗ rank ; // u s u a l way o f s e e d f i n d i n g
#i f de f ined (SEED)

i f ( rank==0 ) { seed=1382954071 ; } // c h r a s h e d i n 28 l o n g 1 , 29 l o n g 1
i f ( rank==1 ) { seed=1384856893 ; } // c h r a s h e d w i t h o u t o u t p u t i n 2 0 1 3 _11_19−2
i f ( rank==2 ) { seed=419 ; } // c h r a s h e d i n 23 b1
// r a n k s 3 t o N−1 a r e s t i l l g e n e r a t e d r a n d o m l y

#end i f
srand ( seed ) ;

// s i m u l a t i o n

Figure 3.13.: Keeping track of the occurred errors, and provoking them by using fixed seeds.
Rank denotes the index of the parallel MPI processes.

code will handle both runs exactly antisymmetric during the whole simulation, so we expect
two antisymmtric pictures after every update..

To show this property, we look at the differen parts of the update probabilities from section
3.2: The proposal probabilities are always 1

4
. The acceptance probabilities does not differ as

well. The determinant of ∆ will stay the same, because the matrix ∆ is just the transposed
compared to the other run. The quantities ϵf and U , which affect the acceptance probabilities
differently for segments and antisegments are set to zero.
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4. Results: Hubbard model in a
magnetic field

In this chaper we will present DMFT results using a CT-QMC solver for the Hubbard
model with a magnetic field on a Bethe lattice in infinite dimensions. We investigate how
the spectral function, the self energy and the quasiparticle weight (or effective mass
enhancement) depend on an external magnetic field. The magnetic field shifts the chemical
potential of spin ↑ with +h and the chemical potential of spin ↓ with −h. The corresponding
Hamiltonian reads:

Ĥ = −
∑

<i,j>,σ

ti,j ĉ
†
i,σ ĉj,σ +

∑
i

Un̂i,↑n̂i,↓ −
∑
i,σ

n̂i,σ (µ+ σh) . (4.1)

We expect a spin dependent change in the spectral function and the effective mass. In
strongly correlated systems, the effective mass enhancement is exceptionally large. Local
interactions may cause spin fluctuations; the application of a magnetic field can suppress
these fluctuations and hence give rise to a neutralizing of this mass enhancement [3].

4.1. Testing the SIAM

This section describes some CT-QMC test-results. These have only minor physical mean-
ing but a significant impact, concerning the validity and the performance of the CT-QMC
code.

As we pointed out in section 2.1, the analytic solution (2.24) of the spinless Anderson model
can be used to check large parts1 of the code. The only point, where the interaction enters
the CT-QMC simulation is the determination of the ratio between the weights of the old
and the new configuration (3.16). If we look at the results shown in figure 4.2, we see a very
good agreement of our results with the analytic solution even at τ = 0. With a very high
number of meshpoints for the Green function, the analytic solution is in the errorbars of the
numeric result (compare section 3.6).

A further important test (comp. figure 4.3) is to go to high β (i.e. low temperatures), mean-
ing high expansion orders (average number of segments). As described in 3.3, the expansion
order determines the dimension of the fast update matrices. Hence a high expansion order

1estimation of the author: 95%
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figure expansion order runtime
4.2 6 20min
4.3 92 20h

Figure 4.1.: expansion order vs runtime

leads to a significant increase of the runtime, as can be seen in tabular 4.1 . The results
show, that an expansion order ≈ 90 is still accessible. Considering that CT-QMC is only
one step of a DMFT loop with 10 - 100 iterations (from experience), we hit the limits of
practicality 2. An idea to increase the expansion order even more is to go to bigger com-
putational resources. For the Augsburger Linux Computer Cluster (ALCC) 20 cores for 10
days are in general the maximum job size.

2These calculations were performed on the Augsburger Linux Computer Cluster (ALCC)
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Figure 4.2.: comparison with the analytic results:
We observe a very good accordance with the analytic solution.
input parameters:
U = 0;β = 10; |V |2 = 2; ϵf = 1;
NoMeshp Gf=8192; NoMeshp Chi=32;
WarmUps=0.3mio; Measurements=20bins * 2mio
execution parameters:
average expansion order≈6; runtime=70min
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Figure 4.3.: computational limits:
We can increase beta up to 1000.
input parameters:
U = 1;β = 1000; |V |2 = 0.1; ϵf = −0.2;
NoMeshp Gf=16384; NoMeshp Chi=256;
WarmUps=0.3mio; Measurements=20bins * 0.1mio
execution parameters:
average expansion order≈92; runtime=20h
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4.2. Comparison to NRG results

We use a semicircular non interacting density of states (Dos)

Dos(ϵ) =
2

πD2

√
D2 − (ϵ+ µ)2, (4.2)

as described in chapter 1. In the following we investigate the dependence of the spectral
function for spin up electrons with respect to a magnetic field. The spin down spectral
function ρ↓ is symmetric to ρ↑ with respect to 0 in the half filled case:

ρ↓(ω) = ρ↑(−ω). (4.3)

Hence, for reasons of simplicity we do now plot the spin down quantities for the cases of half
filling. Further we examine the effective mass of the particles at the Fermi surface.

We compare our results to the NRG results presented in [3]. The difference between
the two used methods is, that NRG operates on the real energy axis at zero temperature,
whereas CT-QMC operates in imaginary time domain for finite temperature. Hence we
expect some distortion due to maxent [21] and some temperature dependent broadening of
the spectral function in the CT-QMC results. We compare the spectral function and the
inverse quasiparticle weight for different interaction strengths and different magnetic fields.
The inverse quasiparticle weight describes the enhancement of the effective mass due to
electronic correlation 3 and is computed according to the following formula [22], [3], [2]

z−1 =
m∗

m
= 1− ∂Re {Σ(ω)}

∂ω
. (4.4)

As we work in Matsubara domain, we have to rewrite this formula. The self-energy is an ana-
lytic quantity, so the Cauchy Riemann equations hold and we can perform the differentiation
in Matsubara frequencies.

z−1 =1− ∂Im {Σ(iωn)}
∂iωn

∣∣∣
z=0

= 1− Im {Σ(iω0}
ω0

(4.5)

(4.6)

with

ωn =
(2n+ 1)π

β
. (4.7)

In the second step we used that Im {Σ(z = 0)} = 0.

In the following we will compare the CT-QMC and the NRG results for different magnetic
fields in different parameter regimes.

We used the same input parameters as presented in paper [3]:

U = . . . ; β = 30; D = 2; µ =
U

2
(at half filling); (4.8)

m = 0.15; MC warm ups = 20mio; MC Steps = 900mio. (4.9)
3 A high inverse quasiparticle weight hence indicates a strong influence by correlation.
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4.3. Weak interaction strength

The weak interacting regime is simulated at U = 2. 100 mio MC Steps were used for these
results. Without a magnetic field, we see a spectral function, which is similar to the non

0
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(a) CT-QMC results
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(b) NRG results [3]

Figure 4.4.: spectral function for U = 2

interacting density of states. The interaction smooths out the edges but the general shape is
the same. With increasing magnetic field the band gets broadened. For h ≈ 0.7 the spectral
density shows a weak two peak structure. For higher magnetic fields they loose it again.
The oscillations on top of the CT-QMC results may origin from the attempt to reproduce
sharp turning point features4, which can be found in the NRG results. We notice, that these
oscillations are stronger for the regime of high magnetic fields. These spectral functions
exhibit a sharper turning point feature in the NRG results.

As can be seen in fig. 4.5, the effective mass is enhanced with a factor 1.5 (m∗ = 1.5m) in
the absence of a magnetic field (h = 0) and Coulomb interaction U = 2. For an increasing
magnetic field this value decreases towards 1, which means a very small mass enhancement.
This origins exactly from the mechanism of suppressed spin fluctuations described in the
introduction of this chapter.

To illustrate the computation of the effective mass enhancement and to convey a better
impression of the quantities of the DMFT loop, the self-energies are shown for the strongest
and weakest magnetic field in figure 4.6.

We see very good agreement between the results of this work and the results of [3]. For the
inverse quasiparticle weight it would be nice to compare more meshpoints to see if smaller
details like the kink at h = 0.9 are reproduced as well.

4compare section 3.5
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Figure 4.5.: quasi particle weight for U = 2
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Figure 4.6.: Self-energies used for the calculation of the inverse quasiparticle weight in CT-
QMC.
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4.4. Intermediate interaction strength
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Figure 4.7.: spectral function for U = 5

For the intermediate regime an interaction strength of U = 5 has been chosen. We see a
three peak structure in the spectral functions (figure 4.7) for all magnetic field strengths.
With increasing magnetic field, more and more states are shifted towards the lower Hubbard
band (LHB). The inverse quasiparticle weight (figure 4.8) starts with a value of ≈ 10 for
h = 0 and is much lower for h ≈ 0.2.

In the spectral function the comparison of the CT-QMC results with [3] show a quantitative
good agreement. The CT-QMC result exhibits a broadening in the LHB for h ≥ 0.175 at
ω = −5 and a peakier top region. These effects origin from the analytic continuation and
the finite temperature. There are no oscillations on top of the CT-QMC spectral functions
and no sharp turning points in the NRG results. The quasiparticle peak (QP) or Kondo
peak at ω = 0 differs slightly but shows the same features. NRG is the only solver, which
can get the Kondo peak accurately, as it works on the real energy axis. Hence one is able
to use a very dense mesh around ω = 0, to produce highly accurate results in this region.

The results of the inverse quasiparticle weight capture only the same tendency as the results
from [3]. Both results increase slowly with rising magnetic field, reach some maximum
and decrease drastically for higher magnetic fields. The obvious distinction is, that the
divergence of the inverse quasiparticle weight is not present in the CT-QMC data. We can
see some features around h = 0.12 in the CT-QMC data, which indicate that the data in this
region might not be reliable. According to (4.4), the quasiparticle weight strongly depends
on self-energy around ω = 0. As the spectral function differs at the Kondo peak, the other
quantities in the self-consistency loop will differ as well. Hence the moderate agreement is
not surprising. The convergence factor of the DMFT loop for these results is at O(10−4).
Usually it is of order O(10−5). An further increase of the convergence factor was to expansive
from a computational point of view.
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Figure 4.8.: inverse quasiparticle weight for U = 5

4.5. Quarter filling

The interaction is again at intermediate interaction strength (U = 5) but the system is now
at quarter filling (n = 0.5). As we are away from half filling now, the spin symmetry (4.3)
is broken now. For this reason we show all quantities for both spin channels. Only 70 mio
MC Steps were used to produce the results. To achieve quarter filling the chemical potential
has to be set to the values listed in table 4.9.

magnetic field: h chemical potential: µ
0.0 -0.2194
0.1 -0.2292
0.25 -0.2881
0.4 -0.3998

Figure 4.9.: chemical potential for different magnetic fields to establish quarter filling

In the case of quarter filling the non interacting density of states is only little modified.
Some of the lower states are shifted to an energy ω ≈ 7 and form a small upper Hubbard
band band (UHB) there. With increasing magnetic field, this effect is getting weaker /
stronger for the spin up / down channel. For the up channel and h = 0.4 there are no more
states shifted to ω ≈ 7. We hence yield the uncorrelated-like density of states in the spin
up channel and a two peak structure in spin down channel. There is a two peak structure
present in this spectral function (LHB and UHB). The oscillations for spin up (h = 0.0 at
ω = −1) and for spin down (h = 0.1; 0.25; 0.4 at ω = −1) are artificial features due to the
analytic continuation and do not indicate a three peak structure. We can observe a good
agreement of the spectral functions of both spin channels. The oscillations on top of the
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Figure 4.10.: spectral function for U = 5;n = 0.5

CT-QMC results may origin from the attempt to reproduce sharp turning point features5,
as argued in section 4.3. In contrast to this section we see stronger oscillations for h = 0.0
and h = 0.1 in the spin down channel, which correspond to the sharp turning point features
at the top of the NRG spectral function at ω = 1.

The inverse quasiparticle weight is in a range between 1 and 1.5 and is thereby much smaller
than in the regime of intermediate interaction. It is very interesting to notice, that in the
range h ∈ [0.0; 0.1] the effective mass is decreasing for spin up and increasing for spin down
at the same time. The inverse quasiparticle weight coincides very well with the results
from [3]. The spin up channel is monotonic decreasing from 1.5 to 1, while the spin down
channel is always approximately 1.5 and has a maximum at h ≈ 0.15. This is the expected

5compare section 3.5
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effect announced in the introduction of this chapter. More meshpoints would increase the
comparability with [3].
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Figure 4.11.: quasi particle weight for U = 5;n = 0.5



71

Conclusion

To summarize the results of this work we repeat the key messages of each chapter.

In Chapter 1 we presented the DMFT self consistence scheme in such a way, that it can
be implemented easily. We gave an effective way of measuring the lattice occupation in
Matsubara domain. Further we proofed that half filling can always be established by setting
µ = U

2
.

The 2. Chapter we solved the non-interacting Single Impurity Anderson Model analytically.
This is a key feature for debugging, as approximately 95% of the CT-QMC code can be tested
by that. Further we explained the segment picture and how the one- (Green function)
and two- particle (susceptibility) correlation functions are measured in the hybridisation
expansion of the interacting SIAM. The analytic derivations of this chapter are generalized
to a SIAM with spin and an external magnetic field.

Chapter 3 explains how the CT-QMC algorithm works from a practical point of view. The
Metropolis-Hasting algorithm can be used to handle a broad class of problems by sampling
statistically trough indefinite configurations spaces. Further this algorithm is highly parallel,
which plays a crucial role on todays high performance computing architectures. In the
section about the Fast update procedure we introduce a highly effective speedup, which
is a necessary foundation for every CT-QMC simulation. Further we pointed out some
numerical difficulties and tricks suitable for debugging. People who are eager to implement
similar concepts like the ones presented in this chapter are strongly encouraged to read this
part.

In Chapter 4 the CT-QMC results, which were produced by the CT-QMC code written
in the context of this thesis, for the Hubbard model in a magnetic field are presented. We
see how the Hubbard model behaves, in different interaction regimes and at different fillings
under the influence of an increasing magnetic field. We see clear examples

• how the analytic continuation influences the quality of the results,

• how a spin polarisation can take place: fig. 4.4,

• a reduction of the effective mass enhancement with rising magnet field: fig. 4.11,
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• and how the spectral function of one spin channel evolves back to the non-interacting
DOS, while the spectral function of the other spin channel forms into a two-peak
structure: fig. 4.10.

In most cases we see a good agreement of the numeric data compared with the NRG based
results presented in reference [3]. Differences origin from the characteristics of used solvers
and pointed out clearly.
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A. Appendix: Poster

Results of this work were presented by Markus Dutschke on the ¨Frühjahrstagung der
Deutschen Physikalischen Gesellschaft, Sektion kondensierte Materie, 30. März - 4. April
2014 in Dresden¨ in cooperation with Prof. Liviu Chioncel and Prof. Junya Otsuki
[7].
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