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I Introduction

1 Motivation

This thesis aims to develop a method to treat correlated electron systems close to an
integrable point during the prethermalization regime. In particular, we will investigate
various nonequilibrium protocols acting upon the weakly interacting Hubbard model.
Our method will be based on two fundamental concepts of quantum mechanics. First,
physical observables are represented by Hermitian operators, and their expectation
values give the mean value of measuring the corresponding quantity in an experiment.
Therefore, we aim to compute expectation values instead of other non-measurable
quantities, e.g., the wave function. Second, there is an inverse relationship between
time t and energy E, t „ ~

E
according to the Schrödinger equation and the uncertainty

relation. A weakly interacting system exhibit two different energy scales. The first
is a “high” energy scale due to the hopping Hamiltonian, and the second is a “low”
energy scale induced by the weak interactions. This separation of energy scales leads
to a separation of time scales. We call the short time-scale prethermalization regime
and the long one thermalization regime. We will expand the expectation values in the
integrability-breaking parameter and compute the lowest-order nontrivial contributions.
They will relax to a stationary value in the thermodynamic limit. In finite systems,
there will be infinitely many recurrences, and no relaxation occurs. The cumulative
effect of the integrability-breaking terms generates further relaxation processes. These
processes are not captured by our method, and they induce thermalization at later
times.1–3

It is well established by now that there is a significant difference between the nonequi-
librium dynamics of integrable and nonintegrable quantum systems.4 Nonintegrable or
generic systems thermalize, meaning that observables relax towards stationary values
described by a Gibbs ensemble with an effective temperature determined by the initial
state.1–3 The eigenstate thermalization hypothesis (ETH)5–9 tries to explain when and
why this phenomenon occurs. On the other hand, integrable systems relax towards a
generalized Gibbs ensemble (GGE),10–13 which retains an additional amount of informa-
tion on the initial state. We focus on generic systems, which are close to an integrable
point. The high-energy scale then corresponds to an integrable system, and thus we
expect relaxation towards a GGE on the prethermalization time scale. At later times the
weak interactions induce further dynamics, and thermal expectation values are reached.

Systems of ultracold atoms provide exceptional opportunities to study such nonequi-
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I INTRODUCTION

librium problems experimentally because they are in almost perfect isolation from the
environment. The primary time scale for the temporal evolution of ultracold atoms is
orders of magnitudes slower («1 ms) than that for correlated electron systems («1 fs),
making it much easier to keep track of the time evolution.14 Experimental progress in
ultracold atom systems15–20 allows to measure the relaxation process of nonequilibrium
dynamics. Some experimental setups exhibit nonthermal steady states,21–23 which were
identified as prethermal states.

The generation of prethermal states is a generic feature and occurs in solids as well.
However, the time window for observations closes more rapidly than in ultracold atom
experiments, making it more challenging to detect the prethermal states. Our method
will predict the properties of the prethermal state and the point in time of its creation.
The theoretical prediction should act as a guide for experimental setups.

2 Organization of the thesis

We study correlated electrons in solid matter, which we model by interacting fermions
in the thermodynamic limit.24–27 We compute the quantities of interest for the Hub-
bard model,28–30 which we introduce in section 3. We investigate a particular class of
nonequilibrium problems. Initially, the system is in the ground state, and then a small
time-dependent perturbation brings the system out of equilibrium, and the observables
become time-dependent. Our general method is the expansion in interaction strength
g around the integrable point of a noninteracting system. We calculate the first first
nontrivial contribution as in weak-coupling it dominates during the short time scale.

The quantity of interest is the zeroth, first or second-order term in g depending on
the nonequilibrium protocol and observable. The power in g determines the observed
features. We always encounter relaxation to a constant value. A prethermal or thermal
state captures these constant values. On a larger time scale, the weak interactions lead to
thermalization.1–3 We shortly explain thermalization induced by quasiparticle scattering
in the outlook subsection III.6.a) . We introduce the concepts of thermalization and
prethermal states governed by a GGE in section 4.

This dissertation has two main chapters. In the first one, we investigate local po-
tential quenches. We start from a translationally invariant state and break its symmetry
by quenching an attractive impurity potential on a single site to generate dynamical
Friedel oscillations in the site-resolved density of particles. Thus, we have a nontrivial
time evolution in Opg0q and treat the problem as purely noninteracting. As a result,
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3 HUBBARD MODEL

the observables relax to a state described by a GGE10–13 as the system is integrable.
Our main result is the distinction between two physically different regimes. In the first
one, the GGE becomes the standard Gibbs ensemble, while in the second an additional
conserved quantity becomes relevant.

In the second chapter, we study a time-dependent perturbation, which is uniform
in space. Due to the symmetry, the purely noninteracting state is not affected, and we
compute the first or second correction in g depending on the observable. We group the
observables into two categories according to whether the linear term in g vanishes or
not. Furthermore, we investigate two different classes of problems. First, we change
the interaction strength by different protocols, including quenches, ramps, and periodic
driving. The initial state is non- or weakly interacting. Second, an electric field pulse hits
the weakly interacting system. Interactions induce nontrivial dynamics, and our method
predicts a nonthermal steady state, which we expect to collapse on the thermalization
time scale.

3 Hubbard model

In 1963 Gutzwiller,30 Kanamori,29 and Hubbard28 independently proposed the same
Hamiltonian Ĥ. They studied the physics of transition and rare-earth metals with very
localized outer electrons in d or f shells.27 Nowadays, it is referred to as the Hubbard
model, and it is the sum of two competing terms. The first one is an electronic hopping
Hamiltonian and the second is a local interaction term. By studying this idealized
model, one can find various interesting universality classes of strongly correlated electron
systems.31

First, we set up the general electronic Hamilton operator of solid-state physics and
gradually approximate it to the Hubbard Hamiltonian. We apply the Born-Oppenheimer
approximation,32 which means that the motion of the ions is neglected. Thus, the effec-
tive Hamiltonian consists of the electrons’ kinetic energy, the electron-ion interaction and
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I INTRODUCTION

the electron-electron interaction. The first two parts are captured by a single-particle
operator Ĥ0 and the electron-electron interaction by a two-particle operator V̂ ,

Ĥ “ Ĥ0 ` V̂ ,

Ĥ0 “ ´
ÿ

σ“Ö

ż

Ψ̂:
σprq

ˆ

~2

2m
∆´ Vionprq

˙

Ψ̂σprq dr ,

V̂ “
ÿ

σ,σ1“Ö

ż ż

Ψ̂:
σprqΨ̂

:

σ1pr
111
q

e2

8πε0|r ´ r111|
Ψ̂σ1pr

111
qΨ̂σprq dr dr111 .

Our derivation follows mainly the book of Peter Fulde26 and we consider only the
nonrelativistic formulation. The field operators obey the anti-commutator relations,

!

Ψ̂:
σprq, Ψ̂σ1pr

111
q

)

“ δσσ1δpr ´ r1q ,
!

Ψ̂σprq, Ψ̂σ1pr
111
q

)

“

!

Ψ̂:
σprq, Ψ̂

:

σ1pr
111
q

)

“ 0 .

Next, we insert orthonormal basis functions fiprq to express the Hamiltonian in creation
ĉ:σi and annihilation operators ĉσi,

Ĥ0 “ ´
ÿ

i,j

ÿ

σ

tij ĉ
:

σiĉσj , tij “

ż

f˚i prq

ˆ

~2

2m
∆´ Vionprq

˙

fjprq dr ,

V̂ “
ÿ

i,j,k,l

ÿ

σ,σ1

Vijkl ĉ
:

σiĉ
:

σ1j ĉσ1kĉσl , Vijkl “

ż ż

e2f˚i prqf
˚
j pr

111qfkpr
1qflprq

8πε0|r ´ r111|
dr dr111 .

The transformation and anti-commutator relations are

Ψ̂σprq “
ÿ

i

fiprqĉσi , ĉσi “

ż

f˚i prqΨ̂σprqdr ,

!

ĉ:σi, ĉσ1j

)

“ δσσ1δij and
!

ĉ:σi, ĉ
:

σ1j

)

“

!

ĉσi, ĉσ1j

)

“ 0 .

It is common practice to choose an approximate reduced basis to make the problem
feasible. Therefore, the quality of this description depends on the functional form of
fiprq as well as on their number.26

The idea of the Hubbard model is to neglect all the parameters Vijkl except for the
ones with the highest magnitude. We assume localized functions fiprq, which implies
that |fiprq|

2 decays fast with |r ´ ri| compared to the lattice constant. Then, naturally
Viiii ” Ui has the highest magnitude. The potential energy V̂ simplifies to

V̂ “
ÿ

i,j,k,l

ÿ

σ,σ1

Uiδi,lδj,kδi,j ĉ
:

σiĉ
:

σ1j ĉσ1kĉσl “
ÿ

i

Uiĉ
:

iÒĉÒiĉ
:

ÓiĉÓk “
ÿ

i

Uin̂Òin̂Ói .
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3 HUBBARD MODEL

If the lattice is translational invariant, then Ui becomes independent of the lattice site
(Ui ” U) and the kinetic energy can be diagonalized by Fourier transformation,

ĉσk “
1
?
L

ÿ

j

eik¨rj ĉσj , tij ÝÑ ti´j , εk “ ´
ÿ

δ

tδe
´ik¨rδ .

The single-band Hubbard Hamiltonian for the translational invariant case is

Ĥ “
ÿ

k

ÿ

σ“Ö

εkĉ
:

σkĉσk ` U
ÿ

i

n̂Òin̂Ói . (I.1)

In reciprocal space, the double occupation can be reformulated,

D̂ “
ÿ

i

n̂Òin̂Ói “
1

L

ÿ

k1,k2,k3,k4

∆k1`k2´k3´k4 ĉ
:

σk1
ĉ:σk2

ĉσk3
ĉσk4

,

∆k “
1

L

ÿ

i

e´ik¨Ri “
ÿ

G

δkG .

In the remainder of this thesis, we mainly use the tight-binding Hamiltonian for the
kinetic energy part. In the tight-binding approximation, electrons hop only from one site
to the nearest neighboring site. Thus, the hopping amplitudes tij for nearest neighbors
are finite, and the others vanish. This is reasonable in the case of localized wave functions
as the nearest neighbor amplitudes have the highest magnitude of all tij. The on-site
terms tii act as an energy offset, and therefore we may neglect them. For example, the
dispersion relation εk on the d-dimensional hyper-cubic lattice is

εk “ ´2t
d
ÿ

n“1

cospknq .

The main advantage of the tight-binding model with Hubbard interaction is that it has
only two parameters, t and U .

In the textbook of Ashcroft and Mermin,32 the Hubbard model is described as “a
highly oversimplified model” for strongly interacting electrons in a solid.31 Nevertheless,
the Hubbard model is one of the most important models in theoretical condensed-matter
physics. Despite its simple formulation, the Hubbard model is believed to exhibit various
characteristic phenomena, including metal-insulator transitions, antiferromagnetism,
ferrimagnetism, ferromagnetism, Landau-Fermi liquid and Tomonaga–Luttinger liquid
behavior, and superconductivity.31 Exact solutions for all interaction strengths can
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I INTRODUCTION

be obtained for the Hubbard model in one dimension.33 The model can describe the
Mott–Hubbard transition between an insulating and a metallic phase in infinite dimen-
sions at half-filling.33 On the one hand, one cannot expect that the Hubbard model itself
properly describes an experimental situation in detail, further it is usually necessary to
extend it properly. On the other hand, the model already contains the necessary terms
to describe the basic properties of correlated electron systems.33

4 Thermalization and prethermal steady states

Steady state

The concept of a steady state is intuitively clear in classical mechanics. If all masses do
not move anymore, then the state is stationary. Hence, it corresponds to all observables
being constant in time. In quantum mechanics, a system is regarded as steady if all
expectation values of physical observables are constant in time. This is true if the
quantum-mechanical wave function |Ψptqy is an eigenstate of the Hamiltonian,

Ĥ|Ψptqy “ E|Ψptqy .

We note that all observables are constant in time for an eigenstate, but not the wave
function itself. According to the Schrödinger equation,

i~
B

Bt
|Ψptqy “ Ĥt|Ψptqy ,

the wave function still has a time-dependent complex phase. Hence, the wave functions is
not constant in time even if it is an eigenstate. We compute time-dependent expectation
values and not wave functions. When we encounter representative observables, which
become constant in time, we say that the system has reached a steady state. More
complicated observables may not relax in this manner, so that is not a strict definition.

A classical analog to this situation is the dynamic of a fluid, for which the surface
is an important observable. If the surface does not move, we speak of a steady state.
The more complicated observables are the dynamics of water molecules, which are still
moving, e.g., due to Brownian motion.

If a quantum-mechanical state relaxes to a steady state, it is described by the so-
called diagonal ensemble.8,34–36 We recap its derivation for a quench from Ĥ0 to Ĥ.
Every eigenstate |αy of the final Hamiltonian Ĥ shall be described by its eigenenergy E
and an additional quantum number λ. Usually, it is assumed that the spectrum of Ĥ is
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4 THERMALIZATION AND PRETHERMAL STEADY STATES

nondegenerate and incommensurate.35,36 We prefer to use the assumption by Kennes et
al.37 that Ĥ0 and Ĥ share the same set of additional quantum numbers λ, i.e., the same
related symmetries. Due to this assumption, the pre- and post-quench Hamiltonians
share the quantum numbers λ, and we will use

xE 1, λ1|Ψ0yxΨ0|E, λy “ δλ,λ1xE
1, λ|Ψ0yxΨ0|E, λy . (I.2)

If it exists, the steady-state expectation value must be equal to the long-time average,

xÔy ” lim
tÑ8

1

t

t
ż

0

dτxÔyτ

“
ÿ

E,E1

ÿ

λ,λ1

xΨ0|E, λyxE, λ|Ô|E
1, λ1yxE 1, λ1|Ψ0y lim

tÑ8

1

t

t
ż

0

dτ eiτpE´E
1q

(I.2)
“

ÿ

E,λ

|xΨ0|E, λy|
2
xE, λ|Ô|E, λy

“ Tr
!

ρ̂DE Ô
)

” xÔyDE ,

ρ̂DE “
ÿ

α

|αyxα|Ô|αyxα| . (I.3)

Eigenstate thermalization hypothesis

A pure isolated state under unitary time evolution remains a pure state. However, the
diagonal ensemble does not resemble a pure state, but not the thermal state either.
The density matrix can only become thermal if the system has contact with a thermal
bath. Nevertheless, it was observed that expectation values relax to their corresponding
thermal values.1–3 The eigenstate thermalization hypothesis (ETH)5–9 explains why a
system can “thermalize” in this sense, as we now discuss.

A system thermalizes if the expectation values under investigation relax to their thermal
values. The choice of proper observables is important as thermalization varies with the
observables under investigation. E.g. it is expected that “local” observables thermalize
faster than “global” observables. In subsection III.2.b) , we formally construct constants
of motion, which cannot relax and therefore are not expected to thermalize. The techni-
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I INTRODUCTION

cal statement of ETH is that the diagonal ensemble and the microcanonical ensemble
result in the same expectation values for certain cases,

xÔyDE “ xÔymicrocan.pE0q ”
1

ZE0,∆E

ÿ

α
|E0´Eα|ă∆E

xα|Ô|αy , (I.4)

ZE0,∆E “
ÿ

α
|E0´Eα|ă∆E

1 .

According to Rigol et al.8 , there are three scenarios in which the ETH is applicable.
First, the eigenstate expectation values xα|Ô|αy do not fluctuate between eigenstates
that are close in energy. In this case, equation (I.4) holds without exception for all initial
states that are narrow in energy. Second, for physically interesting initial conditions,
the eigenstate occupation numbers |xΨ0|αy|

2 are equal for eigenstates that are close
in energy. Therefore, equation (I.4) immediately follows. Third, for eigenstates close
in energy, there are large eigenstate-to-eigenstate fluctuations of both xα|Ô|αy and
|xΨ0|αy|

2. However, for physically interesting initial conditions, the fluctuations in the
two quantities are uncorrelated, and a given initial state then performs an unbiased
sampling from the distribution of xα|Ô|αy, resulting in equation (I.4).

Integrable models have an extensive set of constants of motion, which are conserved
after a quench. This leads to correlation within the xα|Ô|αy and |xΨ0|αy|

2. Thus,
the ETH is violated, and the long-time limit is a nonthermal value. Nevertheless, it
may be captured by a statistical ensemble. The statistical ensemble is constructed
as the thermal ensemble of a reduced Hilbert space. The Hilbert space is reduced to
states with identical sets of constants of motion as the initial state. The ensemble is
termed generalized Gibbs ensemble (GGE).10–13 This “generalized” thermalization has
been observed in quenches of integrable models.38 There is progress towards a unified
treatment of the ETH in integrable and generic quantum systems.39

Prethermalization

The expression prethermalization is used when observables relax on an intermediate time
scale to a nonthermal value. It is believed that real systems are always nonintegrable
and eventually thermalize. If approximations lead to an integrable model, then these
approximations are only valid on a certain time scale. The relaxation to the GGE is
then an intermediate step. However, the neglected integrability-breaking terms will then
accumulate, and the expectation values may thus thermalize at a later stage. Thus, the
GGE describes a state stable on the model time scale but breaks down on a larger time

8



4 THERMALIZATION AND PRETHERMAL STEADY STATES

scale. Therefore, the GGE state may be regarded as a prethermal state.

τpretherm

ln(t)

<O

>initial

<O

>therm

<O

>t

Direct thermalization

τpretherm τtherm

ln(t)

<O

>initial

<O

>pretherm

<O

>therm

<O

>t

Prethermalization

Figure 1: Schematic plot for direct thermalization (left) and prethermalization (right)

In figure 1, we depict the dynamics of direct thermalization and prethermalization
schematically. The time axis in both plots is logarithmic to emphasize the separation
of time scales.40 In the left-hand plot, the observable relaxes during a single time
scale and stays constant after reaching its thermal value. In the right-hand plot, the
transient splits into two regimes. During the earlier times up to τpretherm relaxation
to a nonthermal value occurs. On the much larger time scale τtherm, slower processes
lead to thermalization. During intermediate times τ with τpretherm ! τ ! τtherm the
system exhibits a plateau, which is the characteristic feature of a prethermal steady state.

The main prerequisite for prethermalization is this separation of time scales. The
separation of time scales is a general phenomenon in many different systems and theo-
ries.41 We will investigate systems close to an integrable point. Therefore, we have an
intrinsic separation of time scales. Our τpretherm will be given by the electron hopping
between the crystal lattice sites.42 The τtherm includes inverse orders of the weak inte-
grability breaking parameter g.

Our method will be nonperturbative in the fast process and perturbatively in the
slow processes. Thus, it will capture the time scale τpretherm, but it has no access to
the time scale τtherm. Consequently, our method will compute transient from the initial
value xÔyinital to the prethermal plateau value xÔypretherm. We will encounter both cases
of direct thermalization and prethermalization in this dissertation. In chapter II, the
strength of the perturbation determines whether the local density relaxes to a thermal
or a prethermal expectation value. In chapter III, the observable under investigation
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I INTRODUCTION

determines the two cases. The occupation numbers relax to prethermal values. On the
other hand, the kinetic energy, double occupation, and current relax to their thermal
values.

Time scales after a pump pulse

Pump-probe spectroscopy has enabled the study of excitation and relaxation processes
in correlated electron systems. Aoki et al.14 explain the dynamics after a pump pulse in
three general phases. Their schematics are displayed in figure 2. First, photoirradiation
excites the system. This is captured by Fermi’s golden rule (linear-response theory) for
weak pumps or the Schwinger mechanism (Landau-Zener tunneling) for strong fields.
The system may also reach a nonequilibrium time-periodic steady state during the
laser application, a so-called Floquet state.43 The effective Floquet Hamiltonian can
drastically differ from the original one. It is possible to generate a negative temperature
ensemble44 during the excitation phase.

1 10 10
2

10
3

10
4

Excitation
  Fermi’ s golden rule
  Landau-Zener tunneling
  Floquet state
  negative temperature

laser

Relaxation (electron dynamics)

Relaxation (electron + phonon)

coherent phonon

el-el scattering

metastable

doublon decay 

time [W 
-1

]

lattice distortion

prethermalization

thermalization

“d
is

ta
n

ce
” 

fr
o

m
 e

q
u

il
ib

ri
u

m

nonthermal fixed point dynamical phase transtion

Franck-Condon
el-ph scattering

Figure 2: Schematic time evolution of a system in a pump-probe experiment. From
reference14

Second, relaxation due to electron dynamics sets in. The early stages of electron-electron
scattering are very distinct from the late time scattering for weakly interacting systems.
We investigate the early stages in section III.4, which lead to a prethermal state for
intermediate times. Later on, electron-electron scattering is governed by the Boltzmann
equation,45–47 which leads to a thermal distribution as we will discuss in subsection
III.6.a). The dynamic can passage nonthermal fixed points.48 One might first expect
that strong interactions give rise to fast interparticle scattering, which would restore
equilibrium quickly. However, doublons and holes are created during the first stage in
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4 THERMALIZATION AND PRETHERMAL STEADY STATES

Mott insulators, and these annihilate in pairs. The relaxation time of doublons in a
gapped system can be orders of magnitude longer than the intrinsic time.49 Certain
nonequilibrium models exhibit a critical perturbation strength. If the excitations exceed
that, then the dynamical features change spontaneously. This phenomenon is coined dy-
namical phase transition50 as it resembles certain aspects of equilibrium phase transitions.

At a certain point, the relaxation process enters the third phase, and the electronic
system couples to classical degrees of freedom. Usually, these are lattice distortions. The
corresponding electron-phonon processes can be understood within the Franck-Condon
picture.51 The electronic system is often close to a thermal ensemble but with a higher
temperature than the lattice. During this final phase, lattice and electronic systems relax
to thermal states with a common temperature. This final stage can exhibit macroscopic
spatially dynamical features such as coherent phonons.52
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II DYNAMICAL FRIEDEL OSCILLATIONS

II Dynamical Friedel oscillations

1 Introduction to local quenches

This chapter addresses nonequilibrium dynamics after an impurity quench, i.e. the
sudden potential change at a single lattice site. An impurity induces density modulations,
which are peaked at the impurity site in equilibrium. This phenomenon is called Friedel
oscillations after Jacques Friedel.53 We expect the dynamical creation of similar density
modulations in nonequilibrium. By comparing the equilibrium with the nonequilibrium
situation, we extract the general features of this phenomenon. We encounter a nontrivial
time evolution already for the noninteracting system. Thus, we only investigate a nonin-
teracting, integrable model as interactions would only come into play at later time scales.

Similar quenches have recently been investigated in a series of publications by J. M. Zhang
et al.54–56 They study the real-time behavior after an impurity quench in a one-
dimensional tight-binding chain. Their numerical and analytic investigation shows
cusps56 and plateaus55 in the dynamics of single-particle states, and the Fermi sea
generates dynamic Friedel oscillations.54 For a noninteracting system with impurity
potential, the single-particle eigenstates were found to determine its nonequilibrium
behavior.

We intend to generalize the impurity quench problem to a higher-dimensional set-
ting. Our first choice fell on the Bethe lattice and Cayley tree because its symmetry
enables us to solve this problem analytically. The infinite Bethe lattice is also important
for fermions in high dimensions and dynamical mean-field theory.57–59 We find that
the Hilbert space separates into states, which are either affected or not affected by
the impurity. Consequently, we have to solve an effectively one-dimensional problem.
Furthermore, the exact eigenstates for arbitrary lattices in the thermodynamic limit are
known60,61 from the Lippmann-Schwinger equation. With all eigenstates at hand, we
evaluate the impurity problem also on the square and the simple-cubic lattice.

First, we present shortly our noninteracting quench Hamiltonian and its initial ground
state. Second, we explain how to compute the local density from the single particle
states. Third, we introduce the Cayley tree and its limit, the Bethe lattice.62 After
that, we explain how the symmetry of the Hamiltonian separates the Hilbert space into
closed subspaces. By applying the Hamiltonian to any state of one subspace, the new
states remains in the same subspace. Hence, our problem decomposes into separate
lower-dimensional problems. Next, we apply an ansatz to generate all eigenstates of each

12



1 INTRODUCTION TO LOCAL QUENCHES

subspace. We focus on the shell-symmetric states as we can deduce all other eigenstates
from them. If the impurity strength is larger than a critical value, a localized state
emerges. For weaker impurities, all eigenstates are extended states.

In the second part, we introduce the Lippmann-Schwinger equation and deduce the
single-particle eigenstates with impurity. If the local Green function is accessible, we can
compute the eigenstates for an arbitrary lattice. The local Green function determines
the emergence of the localized state. After checking this ansatz for the Bethe lattice, we
evaluate the dynamics for the Bethe, the square, and the simple-cubic lattice.

In the third part, we show real-time dynamics results. We begin with the short-
time dynamic of the single-particle states. We observe two qualitatively different regimes
depending on the existence of the localized eigenstate. Next, the dynamics for the Fermi
sea exhibit dynamical Friedel oscillation, which spread out with a fixed velocity. We
will encounter our main result, when we compute the long-time limit. It relaxes to two
physically different regimes: If no localized eigenstate exists, our observables relax to
their thermal values. By contrast, if a localized state emerges, then the observable does
not thermalize, and a GGE describes the long-time limit.

a) Impurity quench Hamiltonian

Now, we define the impurity quench Hamiltonian for our scenario,

Ĥt “

"

Ĥ0 for t ă 0

Ĥ0 ` V̂ for t ě 0
.

The unperturbed, translationally invariant hopping Hamiltonian is the same as for the
Hubbard Hamiltonian (I.1),

Ĥ0 “
ÿ

k

εkn̂k .

In this chapter, we drop the spin index σ as the two spin species are uncorrelated. The
second term in the quench Hamiltonian is the impurity operator, which acts on a site
with index 0,

V̂ “ V n̂0 .

For negative times, we have a translationally invariant system, hence the Bloch theorem
gives us all single-particle |Φky and N -particle |Φk1...kN y eigenstates,

|Φky “ ĉ:k|VACy , |Φk1...kN y “ ĉ:kN . . . ĉ
:

k1
|VACy with ĉ:k “

ÿ

j

eik¨Rj ĉ:j .

13



II DYNAMICAL FRIEDEL OSCILLATIONS

Initially, our system shall start in the Fermi sea

|FSy “
ź

εkăεF

ĉ:k|VACy .

There, every single-particle state below the Fermi energy εF is occupied. We choose to
quench at time t “ 0 as this simplifies the formalism. The initial state is an eigenstate
of the prequench Hamiltonian. Therefore, the time evolution is trivial before the quench.
After the quench, the propagator has the explicit form e´itĤt as the Hamiltonian
is constant. Here, we only consider a sudden quench. One can view more general
switching protocols as preparing a time-evolved state, which relaxes at the end of the
protocol. However, we focus on the translationally invariant ground state of the hopping
Hamiltonian as the initial state.

b) Single-particle observable

A the main time-dependent observable we consider the site-resolved density

xn̂ryt “ xFS|eitĤtn̂re
´itĤt |FSy .

The Fermi sea is an eigenstate for negative times, and this density is then trivially
constant. However, after the quench, the Hamiltonian is inhomogeneous, and the trans-
lationally invariant Fermi sea is no longer an eigenstate. Thus, the observables become
time-dependent, and also site-dependent.

In general, our problem is the computation of a single-particle operator time evolved by
a single-particle Hamiltonian. We deduce that our Heisenberg operator eitĤtn̂re

´itĤt is
also effectively a single-particle operator, due to two of its properties. The first is that
the commutator of two single-particle operators remains a single-particle operator,

«

ÿ

n,m

anmĉ
:
nĉm,

ÿ

p,q

bpq ĉ
:
pĉq

ff

“
ÿ

n,m

ÿ

p

panpbpm ´ bnpapmq ĉ
:
nĉm .

The second is that the exponential functions can be expressed as the commutator series

eitÂB̂e´itÂ “
8
ÿ

l“0

pitql

l!
rÂ, . . . rÂ,
loooomoooon

l times

B̂s . . .s .

Then, the Heisenberg operator is a single-particle operator, and its most convenient
form is

eitĤtn̂re
´itĤt “

ÿ

k1,k2

ĉ:k1
ĉk2
xΦk1 |e

itĤtn̂re
´itĤt |Φk2y .

14



1 INTRODUCTION TO LOCAL QUENCHES

Here |Φky is a single particle state with one particle with momentum k. Applying the
Fermi sea from both sides gives

xn̂ryt “
ÿ

εkăεF

xΦk|e
itĤtn̂re

´itĤt |Φky “
ÿ

εkăεF

ˇ

ˇ

ˇ
xr|e´itĤt |Φky

ˇ

ˇ

ˇ

2

. (II.1)

In order to evaluate our observable xn̂ryt, thus, it is sufficient to compute the overlap

of the time-evolved single-particle states e´itĤt |Φky with the local single-particle states
|ry.
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2 Eigenstates of the Cayley tree

a) Introduction to the Cayley tree

We begin with the Cayley tree, which consist of a central site that is connected to Z
other sites. These are the sites of the first ring. Each of these sites is further connected
to Z sites. This generates a new ring with pZ ´ 1q new sites per site in the previous
ring. This generation of rings is iterated until the number of shells R is reached. All
sites in ring R are connected only to the sites of the previous ring, and all other sites
have Z connections. This gives a tree structure with Nr sites in ring r,

N0 “ 1 , Nr “ ZKr´1
pr ě 1q with K “ Z ´ 1 .

An example with coordination number Z “ 3 and number of shells R “ 3 is depicted in
figure 3. We label each site of the Cayley tree with two integers, the first is the shell

0,0

1,0

1,1

1,2

2,0

2,1

2,2

2,3

2,4

2,5

3,0

3,1

3,23,3

3,4

3,5

3,6

3,7

3,8 3,9

3,10

3,11

Figure 3: Cayley tree with Z “ 3 and R “ 3
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2 EIGENSTATES OF THE CAYLEY TREE

number, and the second enumerates the sites in each shell. Hence, every site has a
unique pair of numbers, and the state of a single occupied site is |r, ly with

0 ď r ď R , 0 ď l ď Nr ´ 1 .

In the limit of infinite shells, the Cayley tree is called Bethe lattice because then the
approximation used by Bethe62 becomes exact. We use the tight-binding Hamiltonian
and particles hop along the connections of the Cayley tree,

Ĥ0 “
´1
?
K

ÿ

xpr,lq,pr1,l1qy

ĉ:r,lĉr1,l1 . (II.2)

The scaling of the hopping with 1{
?
K is necessary to get a nontrivial result in the limit

Z Ñ 8. For convenience, the scaled hopping amplitude is set to ´1. We position the
impurity at the central site

V̂ “ V ĉ:0,0ĉ0,0 .

This impurity problem has an advantageous symmetry, which we exploit in the following
section to separate the Hilbert space into closed subspaces. This means that by applying
the Hamiltonian repeatedly, only states of the same subspace are generated. Hence, our
higher-dimensional problem separates into several feasible lower-dimensional problems.

b) Separation of Hilbert space

We have a particular symmetry due to the role of the central site. Each site in a ring
is equivalent to the others. Thus, applying the Hamiltonian to any shell-symmetric
state generates only other shell-symmetric states.63 Consequently, they form a closed
subspace of the Hilbert space. We call the remaining states non-shell-symmetric states.
The non-shell-symmetric states also form several enclosed subspaces with respect to the
Hamiltonian.

Now, we explain how to find the closed subspaces. All sites of one ring are equally
occupied in the shell-symmetric basis states.63 We define them as

|ry “ |r000y “
1
?
Nr

Nr´1
ÿ

l“0

|r, ly . (II.3)

The first two indices in equation (II.3) refer to the original generating state, which is the
central site |0, 0y. The last index 0 indicates that no complex phase is added (compare
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II DYNAMICAL FRIEDEL OSCILLATIONS

|rn,l,kybelow). using this basis, we can represent the Hamiltonian in a pR` 1q ˆ pR` 1q
matrix,

´xr|Ĥ|r1y Ñ

¨

˚

˚

˚

˚

˚

˚

˚

˝

´V
a

Z{K 0 0 ¨ ¨ ¨ 0
a

Z{K 0 1 0 0
0 1 0 1
...

. . .

0 1 0 1
0 0 1 0

˛

‹

‹

‹

‹

‹

‹

‹

‚

. (II.4)

We construct the eigenstates of matrix (II.4) in subsection c) . Due to the symmetry
of our nonequilibrium problem, the change in the local density is not affected by the
non-shell-symmetric states and ∆xn̂r,lyt is completely captured by the change in the
shell-symmetric basis states,

∆xn̂r,lyt “
∆xn̂ryt
Nr

. (II.5)

Next, we define auxiliary non-shell-symmetric states around the central site,

|0, 0, ky “
1
?
Z

K
ÿ

m“0

e
i2πkm
Z |1,my

with 1 ď k ď K, and around other sites |n, ly ,

|n, l, ky “
1
?
K

Z´2
ÿ

m“0

e
i2πkm
K |n` 1, lK `my

with 1 ď k ď Z ´ 2, 1 ď n ď R ´ 1 and 0 ď l ď Nn ´ 1 . Two effects determines the
complex phases in these auxiliary states. First, when we apply an isotropic hopping
Hamiltonian, contributions towards the center cancel each other. Thus, only hopping
away from the center survives. Second, two auxiliary states around the same site with
different k are orthogonal to each other. It is straightforward to see that applying the
Hamiltonian repeatedly on an auxiliary state |n, l, ky generates R´ r states, which form
a new closed subspace of the Hilbert space. These states live in the region between site
|n, ly and the rim. Next, we choose the basis of these subspaces analogously to (II.3).
Each basis state occupies only sites in one ring. The basis states are

|r00ky “

K
ÿ

m“0

e
i2πkm
Z

?
ZKr

Kr´1
ÿ

p“0

|1` r,mKr
` py ,

|rnlky “
Z´2
ÿ

m“0

e
i2πkm
K

?
Kr`1

Kr´1
ÿ

p“0

|n` 1` r, lK `mKr
` py.

18



2 EIGENSTATES OF THE CAYLEY TREE

Now, we can represent the Hamiltonian by the pR ´ nq ˆ pR ´ nq matrix

´xrnlk|Ĥ|r
1
nlky Ñ

¨

˚

˚

˚

˚

˚

˝

0 1 0 ¨ ¨ ¨ 0
1 0 1 0
...

. . .

0 1 0 1
0 0 1 0

˛

‹

‹

‹

‹

‹

‚

.

This matrix is equal to the matrix (II.4) if we set V “ 0, Z Ñ 8 and reduce the
matrix size. Therefore, it is sufficient to focus on constructing the shell-symmetric
eigenstates, and the non-shell-symmetric eigenstates follow directly. We emphasize that
for any isotropic hopping Hamiltonian, this basis separates the Hilbert space into distinct
subspaces. Only the matrix representation of the Hamiltonian changes accordingly.
Additional impurities or anisotropic hopping will break the symmetry, and the Hilbert
space would not separate necessarily. Our choice of the non-shell-symmetric basis states
is not unique, and there exist different basis states with the same attributes. This is
caused by the high degeneracy of the non-shell-symmetric eigenstates. Our new basis
states are by construction orthonormal,

xrnlk|r
1
n1l1k1y “ δr,r1δn,n1δl,l1δk,k1 .

Next, we count the basis states to show their completeness. The sum over the number

aux. state |0, 0y |0, 0, ky |n, l, ky

number of aux. states 1 K pZ ´ 2q
R´1
ř

r“1

Nr

number of states |rynlk R ` 1 R R ´ r

Table 1: Counting of orthonormal shell and non-shell-symmetric states

of new basis states from table 1 is equal to the number of sites in the Cayley tree,

1pR ` 1q `KR ` pZ ´ 2q
R´1
ÿ

r“1

NrpR ´ rq “
ZKR ´ 2

Z ´ 2
“

R
ÿ

r“0

Nr .

Hence, our basis is a complete single-particle basis, and we can fully represent the
Hamiltonian in it. Our analysis is in agreement with previous work.64–67
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c) Ansatz for eigenstates

Here, we solve the stationary Schrödinger equation

Ĥ|ψpzqy “ E|ψpzqy .

We generalize the ansatz used by Mahan63 and van den Berg68 for the shell-symmetric
states and construct the eigenstates of matrix (II.4) with the general vector form

|ψpzqy “ pf0, f1, . . . , fRq .

First, we satisfy the periodic equations,

frE “ fr´1 ` fr`1 for 2 ď r ď R ´ 1 ,

by the ansatz,

fr “ zr ´
yV pzq

zr
for 1 ď r ď R .

The energy is computed as

E “ ´

ˆ

z `
1

z

˙

.

The first two equations fix f0 “
a

K{Zp1´ yV pzqq and

yV pzq “
z2

K
´ V z ´ 1

1
K
´ V z ´ z2

.

The last equation gives yV pzq “ z2pR`1q and thus z has to satisfy the equation,

ˆ

z `
1

z
` V

˙

pzR`1
´

1

zR`1
q “

Z

K

ˆ

zR ´
1

zR

˙

. (II.6)

The energy E is real and therefore, we have two different cases for z. In the first case,
z is equal to eiϕ . In the second case, z is a real number. We restrict the intervals to
ϕ P r0, πs and z P p´1, 1q because equation (II.6) is invariant by the substitution of z
with z´1. We obtain extended states for the complex values of z as the density |fr|

2

oscillates with distance r. If z is real, then the wave function is exponentially localized
|fr|

2 ď 4z2r and we call it bound or localized state.

In figure 4, we depict the eigenenergies depending on the attractive impurity strength.
The impurity has a strong effect on the lowest eigenenergy, and the others get less
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Figure 4: Discrete eigenenergies of the shell-symmetric states in the Cayley tree

affected. Their values decrease slightly for more attractive impurities. This decrease
diminishes even more if we increase the number of shells R. The lowest state becomes
the bound state, and its energy decreases in the order of the impurity strength. We
obtain the corresponding eigenenergies for repulsive impurities by changing the sign of
the eigenenergies in the plots of figure 4.
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One particular effect is prominent in the diagram with Z “ 8 and R “ 10: The
lowest energy stays nearly constant up to |V | « 1, but then it significantly decreases.
Next, we apply the limit RÑ 8, and then this feature becomes a kink. For RÑ 8 and

|V | ď Vc “
Z ´ 2

K
,

equation (II.6) has R` 1 different solutions of type z “ eiϕ. For |V | ą Vc , it has only R
different solutions of this type and a localized state emerges. In both cases, the values
of ϕ are evenly distributed in the interval r0, πs. In the limit R Ñ 8 , equation (II.6)
simplifies for z P p´1, 1q to the quadratic equation,

ˆ

z `
1

z
` V

˙

z “
Z

K
z2 .

It has two solutions,

z1 “

˜

V

2
`

c

V 2

4
`

1

K

¸

K ą 0 , (II.7)

z2 “

˜

V

2
´

c

V 2

4
`

1

K

¸

K ă 0 .

For strong attractive impurities, V ă 0 and |V | ą Vc, we obtain ´1 ă z1 ă 1 and
z2 ă ´1. Analog for strong repulsive impurities, V ă 0 and |V | ą Vc, we obtain z1 ą 1
and ´1 ă z2 ă 1.

In summary, our ansatz captures all eigenstates of the Bethe lattice. We give their
explicit form in the presence or absence of the impurity. We have R ` 1 extended
shell-symmetric states without impurity pV “ 0q,

xr|φpeiϕjqy “ sr

ˆ

eiϕj ´
y0pe

iϕjq

eriϕj

˙

with sr “

c

1´
δr,0
Z
“

" a

K{Z for r “ 0
1 else

.

Furthermore, we have R´ n extended non-shell-symmetric eigenstates in each subspace.
The subspaces are characterized by the three quantum numbers n, l and k,

xrnlk|φnlkpe
iϕjqy “ eiϕj ´

e´2iϕj

eiϕj
.
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The non-shell-symmetric eigenstates have the form of the shell-symmetric eigenstates
with Z Ñ 8 and V “ 0 in their corresponding basis. Our findings for all eigenstates are
in accordance with the analysis of the density of states by Yorikawa.65 We mention that
there the shell-symmetric states are called “linear chain eigenstates”, while “confinement
states” correspond to our non-shell-symmetric eigenstates.

If the impurity is present, only the shell-symmetric eigenstates are affected and become

xr|ψpzqy “ sr

ˆ

zr ´
yV pzq

zr

˙

.

For weak impurities |V | ă Vc , we have R ` 1 solutions with z “ eiϕj . For strong
impurities |V | ą Vc there are R solutions and one bound state solution z “ z1. Thus,
an extended state deforms into a localized state. In the limit RÑ 8, the solutions ϕj
are evenly spread in both cases and the sum over all ϕj becomes an integral,

ÿ

j

|ψpeiϕjqyxψpeiϕjq|

xψpeiϕjq|ψpeiϕjqy
RÑ8
ÝÑ

π
ż

0

dϕ

2π
|ψpeiϕqyxψpeiϕq| .

In conclusion, we expect two different regimes. For weak impurities |V | ă Vc, the
expectation values are computed by the integral over the extended states. For strong
impurities |V | ą Vc, they are computed by the integral plus the contribution of the
localized state. For Z “ 2, the critical impurity strength vanishes VcpZ “ 2q “ 0. For
every finite impurity strength, we are in the strong impurity regime.

If we want to generalize our ansatz to other finite lattices, the eigenstates still have the
same form |ψpzqy, but equation (II.6) only has a finite set of solutions as in figure 4.
In this work, we will not further investigate the finite-size effects of the Cayley tree.
However, interesting recurrence effects54–56 are observed for the periodic chain, which
we expect similarly for the Cayley tree.

d) Site-resolved initial density

In this subsection, we show that the density for the Fermi sea and the Bethe lattice is
equal at every site. The density is site-independent for all fillings if the contribution of
all eigenstates with respect to the angle ϕ are site-independent,

xn̂r,ly0 “

θF
ż

0

dϕ

2π
ρr,lpϕq .
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We have three different terms,

ρr,lpϕq “ |xr, l|φpe
iϕ
qy|

2
`

Z´1
ÿ

k1“1

|xr, l|φ00kpϕqy|
2
`

r´1
ÿ

r1“1

Z´1
ÿ

k2“1

|xr, l|φr1l1kpϕqy|
2.

The first is from the shell-symmetric states,

|xr, l|φpeiϕqy|2 “
1

Nr

|xr|φpeiϕqy|2 .

The next is from the non-shell-symmetric states around the origin,

|xr, l|φ00kpϕqy|
2
“

K

ZKr

“

|xr ´ 1|φpeiϕqy|2
‰

ZÑ8
.

The last is from the non-shell-symmetric eigenstates around the sites |r1, l1y, which
connect the origin with site |r, ly ,

|xr, l|φr1l1kpϕqy|
2
“

1

Kr´r1

“

|xr ´ 1´ r1|φpeiϕqy|2
‰

ZÑ8
.

Inserting the density of a single eigenstate

|xr|φpeiϕqy|2 “

ˆ

1´
δ0r

Z

˙

˜

1´ ei2rϕ
e´i2ϕ

K
´ 1

1
K
´ e´i2ϕ

¸

` c.c.

into the three contributions, we obtain after some simplifications,

ρrlpϕq “
1´ e´i2ϕ

1
K
´ e´i2ϕ

` c.c. .

This is a site-independent result, which is the value at the central site ρ00pϕq. This result
holds also in the special case r “ 1, where the third contribution vanishes. Consequently
the equation,

xn̂r,ly0 “ xn̂0,0y0 ” npθF q ,

holds for all fillings and arbitrary r and l. The filling function npθF q is symmetric around
half-filling

npθF q “ 1´ npπ ´ θF q

24



2 EIGENSTATES OF THE CAYLEY TREE

and its explicit form is

npθF q “

θF
ż

0

dϕ

2π
ZK

2´ 2 cosp2ϕq

K2 ` 1´ 2K cosp2ϕq

“
ZθF ´ pZ ´ 2q

“

π ` arctan
`

Z
Z´2

tanpθF q
˘‰

2π

ˇ

ˇ

ˇ

ˇ

ˇ

θFą
π
2

.

In the two special cases Z Ñ 8 and Z “ 2, it further simplifies to

npθF q “

$

’

’

&

’

’

%

θF ´ cospθF q sinpθF q

π

ˇ

ˇ

ˇ

ˇ

ZÑ8
θF
π

ˇ

ˇ

ˇ

ˇ

Z“2

.

This funtion is depicted in figure 5.
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Z=∞

Figure 5: Filling as a function of θF for different coordination numbers Z
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3 General lattices

a) Post-quench eigenstates

After the detailed study of the Cayley tree and Bethe lattice, we treat the impurity
problem on an arbitrary lattice. During this subsection, we will deduce the general
extended and localized single-particle eigenstates. We will assume a translationally
invariant lattice in the thermodynamic limit. Generally, the Lippmann-Schwinger
equation,69

|Ψky “ |Φky `

´

εk ` iδ ´ Ĥ0

¯´1

V̂ |Ψky , (II.8)

relates the extended eigenstates with perturbation |Ψky to the eigenstates without |Φky.
First, we insert our impurity potential V̂ “ |0yV x0| as the perturbation, then apply the
impurity state x0| from the left and solve for

g00pzq “ x0|
´

z ´ Ĥ0

¯´1

|0y ,

x0|Ψky “ x0|Φky ` V g00pεk ` iδqx0|Ψky ,

x0|Ψky “
x0|Φky

1´ V g00pεk ` iδq
.

We reinsert this into the Lippmann-Schwinger equation (II.8) and obtain

|Ψky “ |Φky `

´

εk ` iδ ´ Ĥ0

¯´1

|0yV x0|Φky

1´ V g00pεk ` iδq
. (II.9)

Generally, the Lippmann-Schwinger equation (II.8) cannot be solved so trivially. The sim-
plicity of our perturbation allows us to compute the new single-particle eigenstates.60,61

They are eigenstates of the post-quench Hamiltonian,

´

Ĥ0 ` V̂
¯

|Ψky “εk|Φky `
Ĥ0´εk ´ iδ ` εk ` iδ

εk ` iδ ´ Ĥ0

|0yV x0|Φky

1´ V g00pεk ` iδq

` |0yV x0|Φky `
g00pεk ` iδq|0yV x0|Φky

1´ V g00pεk ` iδq

“εk|Φky ` pεk ` iδq

´

εk ` iδ ´ Ĥ0

¯´1

|0yV x0|Φky

1´ V g00pεk ` iδq

“εk|Ψky `Opδq .
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The error vanishes for δ Ñ 0. Only systems in the thermodynamic limit have a finite
limit for δ Ñ 0 and εÑ εk,

lim
δÑ0

g00pε` iδq “ <tg00pεqu ´ i sgnpδqπρpεq .

This limit does not exists for systems with finite size. For finite lattices, the eigenenergies
of |Ψky are shifted away from the eigenenergies of |Φky. We have seen examples for this
shift for the Cayley tree in figure 4. Similarly, we construct a localized state,60

|Ψlocy “

´

E ´ Ĥ0

¯´1

|0y
c

x0|
´

E ´ Ĥ0

¯´2

|0y

.

We find that it is an eigenstate,

´

Ĥ0 ` V̂
¯´

E ´ Ĥ0

¯´1

|0y “|0yV x0|
´

E ´ Ĥ0

¯´1

|0y `
Ĥ0´E ` E

E ´ Ĥ0

|0y

“E
´

E ´ Ĥ0

¯´1

|0y ` |0y pV g00pEq ´ 1q ,

if its energy E fulfills the eigenvalue equation,

1 “ V g00pEq . (II.10)

The Green function g00pEq is real for energies E outside the band and equation (II.10)
can be solved. E lies below the band for attractive impurities and above for repulsive
impurities.

If the eigenvalue equation (II.10) is fulfilled for an E, then there is one additional
eigenstate. However, the number of eigenstates is equal in both cases. We indeed have
a new localized state but also lost one extended state. In an infinite system, a missing
extended state goes unnoticed in an extensive amount of states. On the other hand, if
we compute the eigenstates of a finite system, then one eigenstate turns gradually into
the localized state for strong impurities.

b) Shell-symmetric states

We will now investigate the generation of Friedel oscillations.53 According to equation
(II.1), we need the overlap of the states with local basis states. We have the single-
particle eigenstates from the previous subsection. Furthermore, we need a proper local
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single-particle basis. It has to capture the full effect of the impurity, but it should be as
“few” states as possible. Our choice is the basis of nonorthogonal states

Ĥr
0 |0y with r P t0, . . . , Ru .

The parameter R corresponds to the radius in which we study the Friedel oscillations.
We construct an orthonormal basis from that,

|ry “
r
ÿ

n“0

αprqn Ĥn
0 |0y .

The coefficients α
prq
n are computed by the Gram-Schmidt process starting from r “ 0

ending with r “ R. The states |ry are called shell-symmetric states. During the
Gram-Schmidt process, only the moments

x0|Ĥn
0 |0y “

ż

dε ρpεqεn “ εn (II.11)

enter into the computation. The coefficients α
prq
n depend only on the density of states

ρpεq and not on the geometry of the system.

|0y “ |0, 0y |1y “ 1?
3

2
ř

l“0

|1, ly |2y “ 1?
6

5
ř

l“0

|2, ly |3y “ 1?
12

11
ř

l“0

|3, ly
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Figure 6: Shell-symmetric Bethe lattice states

We visualize two examples of shell-symmetric states to understand their distribution in
real space. Our first example is the Bethe lattice in figure 6. There, the orthonormal
states are uniformly occupied rings. We see that the density at each site decreases
with increasing distance r. The intensity of the blue color indicates the density in the
sketches.

28



3 GENERAL LATTICES

|0y |1y |2y |3y

-4,-4

-4,-3

-4,-2

-4,-1

-4,0

-4,1

-4,2

-4,3

-4,4

-3,-4

-3,-3

-3,-2

-3,-1

-3,0

-3,1

-3,2

-3,3

-3,4

-2,-4

-2,-3

-2,-2

-2,-1

-2,0

-2,1

-2,2

-2,3

-2,4

-1,-4

-1,-3

-1,-2

-1,-1

-1,0

-1,1

-1,2

-1,3

-1,4

0,-4

0,-3

0,-2

0,-1

0,0

0,1

0,2

0,3

0,4

1,-4

1,-3

1,-2

1,-1

1,0

1,1

1,2

1,3

1,4

2,-4

2,-3

2,-2

2,-1

2,0

2,1

2,2

2,3

2,4

3,-4

3,-3

3,-2

3,-1

3,0

3,1

3,2

3,3

3,4

4,-4

4,-3

4,-2

4,-1

4,0

4,1

4,2

4,3

4,4

0,0

-4,-4

-4,-3

-4,-2

-4,-1

-4,0

-4,1

-4,2

-4,3

-4,4

-3,-4

-3,-3

-3,-2

-3,-1

-3,0

-3,1

-3,2

-3,3

-3,4

-2,-4

-2,-3

-2,-2

-2,-1

-2,0

-2,1

-2,2

-2,3

-2,4

-1,-4

-1,-3

-1,-2

-1,-1

-1,0

-1,1

-1,2

-1,3

-1,4

0,-4

0,-3

0,-2

0,-1

0,0

0,1

0,2

0,3

0,4

1,-4

1,-3

1,-2

1,-1

1,0

1,1

1,2

1,3

1,4

2,-4

2,-3

2,-2

2,-1

2,0

2,1

2,2

2,3

2,4

3,-4

3,-3

3,-2

3,-1

3,0

3,1

3,2

3,3

3,4

4,-4

4,-3

4,-2

4,-1

4,0

4,1

4,2

4,3

4,4

1,0-1,0

0,1

0,-1

-4,-4

-4,-3

-4,-2

-4,-1

-4,0

-4,1

-4,2

-4,3

-4,4

-3,-4

-3,-3

-3,-2

-3,-1

-3,0

-3,1

-3,2

-3,3

-3,4

-2,-4

-2,-3

-2,-2

-2,-1

-2,0

-2,1

-2,2

-2,3

-2,4

-1,-4

-1,-3

-1,-2

-1,-1

-1,0

-1,1

-1,2

-1,3

-1,4

0,-4

0,-3

0,-2

0,-1

0,0

0,1

0,2

0,3

0,4

1,-4

1,-3

1,-2

1,-1

1,0

1,1

1,2

1,3

1,4

2,-4

2,-3

2,-2

2,-1

2,0

2,1

2,2

2,3

2,4

3,-4

3,-3

3,-2

3,-1

3,0

3,1

3,2

3,3

3,4

4,-4

4,-3

4,-2

4,-1

4,0

4,1

4,2

4,3

4,4

2,0-2,0

0,2

0,-2

1,1

-1,-1

-1,1

1,-1

-4,-4

-4,-3

-4,-2

-4,-1

-4,0

-4,1

-4,2

-4,3

-4,4

-3,-4

-3,-3

-3,-2

-3,-1

-3,0

-3,1

-3,2

-3,3

-3,4

-2,-4

-2,-3

-2,-2

-2,-1

-2,0

-2,1

-2,2

-2,3

-2,4

-1,-4

-1,-3

-1,-2

-1,-1

-1,0

-1,1

-1,2

-1,3

-1,4

0,-4

0,-3

0,-2

0,-1

0,0

0,1

0,2

0,3

0,4

1,-4

1,-3

1,-2

1,-1

1,0

1,1

1,2

1,3

1,4

2,-4

2,-3

2,-2

2,-1

2,0

2,1

2,2

2,3

2,4

3,-4

3,-3

3,-2

3,-1

3,0

3,1

3,2

3,3

3,4

4,-4

4,-3

4,-2

4,-1

4,0

4,1

4,2

4,3

4,4

3,0-3,0

0,3

0,-3

2,1

-2,-1

-2,1

2,-1

1,2

-1,-2

-1,2

1,-2

Figure 7: Shell-symmetric square lattice states

For the Bethe lattice, these shell-symmetric states are identical to the shell-symmetric
basis states used in section 2. The second example is the square lattice in figure 7.
These shell-symmetric states have a diamond form. Every site from one diamond has the
same hopping distance towards the center. The hopping distance is the least number of
necessary hops between two sites. For the square lattice, the hopping distance between
sites px1, y1q and px2, y2q is |x1 ´ x2| ` |y1 ´ y2|. As for the Bethe lattice, the density
thins out away from the impurity. This thinning is stronger at the endpoints and weaker
towards the middle of the edges.
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Figure 8: Shell-symmetric square lattice state with second diamond

A smaller second diamond appears for the square lattice states |ny with n ě 4. It has a
higher density at the endpoints and lower one at the middle, as shown in figure 8. The
color change from blue to red indicates a sign change. Generally, the sign is ˘1 and not
complex as the coefficients α

prq
n are real.
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This emergence of smaller diamonds is investigated in the upper plot of figure 9. The
density of all sites with the same hopping distance to the center is summed up and plot-
ted against the hopping distance. The even |2my and uneven |2m` 1y shell-symmetric
states are made out of m diamonds. The majority of the density is located at the most
outer diamond, and it decreases for the diamonds towards the center.
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Figure 9: Density of shell-symmetric states for the square(top) and simple cubic(bottom)
lattice

We apply the same analysis to the simple cubic lattice in the bottom plot of figure 9. The
density of the first 4 states is at a single distance. For the higher states, it starts to spread.
The majority of the density is at the furthest distances, but it spreads out more compared
to the square lattice. The density maximum shifts to the second most outer diamond
for the last two states with r “ 14, 15. We expect this shift to further increase for larger r.
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The shell-symmetric basis is not complete. Only the impurity site can be represented in
it, whereas all other sites cannot. But the density change after the impurity quench
is fully captured by it. This is due to the symmetry of our problem. The density of
the orthogonal non-shell-symmetric states stays constant during our quench process.
An arbitrary non-shell-symmetric state |NSy is orthogonal to the shell-symmetric basis
states,

xNS|Ĥn
0 |0y “ 0 for n P N .

Hence, the overlap of any non-shell-symmetric state with a time-dependent single-particle
state |Φkptqy is captured by the unperturbed Hamiltonian Ĥ0,

xNS|Φkptqy “ xNS|e´itpĤ0`V̂ q|Φky “ xNS|e´itĤ0 |Φky “ e´itεkxNS|Φky .

We constructed the explicit form of these non-shell-symmetric states for the Cayley tree
and Bethe lattice in section 2 . We do not present the corresponding non-shell-symmetric
states for other lattices. The impurity quench problem becomes one-dimensional if
we represent it in the shell-symmetric states. This simplifies the analysis for higher-
dimensional lattices.

c) Check for the Bethe lattice

In this subsection, we compute the eigenstates for the Bethe lattice from the Lippmann-
Schwinger equation. They will be in accordance with the eigenstates from the finite
Cayley tree in section 2. Hence, this subsection acts as a check for our method.

First, we need the local Green function70

g00pzq “
2K

pK ´ 1qz ` Z
?
z2 ´ 4

with sgn
´

=
?
z2 ´ 4

¯

“ sgn p=zq and <z ą ´2 .

We insert it into the eigenvalue equation (II.10) for the bound state. We assume the
form E “ ´pz1 ` z

´1
1 q for localized-state energy and place it into the Green function

1 “ V g00

`

´pz1 ` z
´1
1 q

˘ 0ăz1ă1
ùñ z1 “

˜

V

2
`

c

V 2

4
`

1

K

¸

K .

This is the same result as in (II.7). We note that the sign of the square root changes,
because the Green function is antisymmetric in z. We need the Green function70 from
the central site to the shell-symmetric state |ry,

xr|
´

z ´ Ĥ0

¯´1

|0y “ gr0pzq “ g00pzq

ˆ

´2

z `
?
z2 ´ 4

˙r
c

Z

K
sr .
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We obtain the identical behavior for the localized state

xr|ψlocy9

˜

´2

´pz1 ` z
´1
1 q ´

a

pz1 ` z
´1
1 q

2 ´ 4

¸r

sr “ zr1sr .

The Green functions simplify for the continuous states,

g00

`

´peiθ ` e´iθq
˘ 0ăθăπ
“

eiθ

1
K
´ ei2θ

,

˜

´2

´peiθ ` e´iθq ´
a

peiθ ` e´iθq2 ´ 4

¸r

0ăθăπ
“ e´iθr .

We insert this into equation (II.9) and recover the same eigenstate as in section 2,

xr|ψpeiθqy “ xr|φpθqy `
gr0

`

´peiθ ` e´iθq
˘

V x0|φpθqy

1´ V g00 p´peiθ ` e´iθqq

“ sr
`

eirθ ´ y0pe
iθ
qe´irθ

˘

`
sre

´irθV eiθp1´ y0pe
iθqq

1
K
´ e2iθ ´ V eiθ

“ sr

˜

eirθ ´ e´irθ
e2iθ

K
´ V eiθ ´ 1

1
K
´ e2iθ ´ V eiθ

loooooooomoooooooon

“ yV pe
iθq

¸

.

We note that if we take the complex conjugated Green function, then our eigenstates
would have the conjugated complex phases. Complex conjugation of the Green function
corresponds to taking the limit to the real axis from the other side of the complex plane.
In this subsection, we have found exactly the same eigenstates as in section 2. This
confirms the eigenstates obtained from the Lippmann-Schwinger equation.

d) Critical impurity strength

In this subsection, we discuss the critical impurity strength Vc as it is a important
property of this noninteracting system. It determines if an impurity generates a bound
state. Our explicit results in section 4 crucially depend on the presence of the bound
state. Hence, it is necessary to fully understand when the bound state is generated
and which eigenenergy it receives. The critical impurity strength Vc is determined by
the minimal εmin and maximal εmax band energies inserted into the eigenvalue equation
(II.10),

repulsive impurity: V ą Vc ; Vc “ pg00pεmax ` δqq
´1 ,

attractive impurity: V ă Vc ; Vc “ pg00pεmin ´ δqq
´1 .

(II.12)
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We start with the tight-binding Hamiltonian on the hypercubic lattice. The hopping

dim 1 2 3 4 5 6 7 8 9 10
|Vc| 0 0 1.98 3.22 4.32 5.37 6.40 7.42 8.43 9.44

|EpVcq| 1 2 3 4 5 6 7 8 9 10

Table 2: Critical impurity strength Vc for the tight-binding Hamiltonian on the hyper-
cubic lattice

amplitude is set to ´1 for all dimensions. We insert the local Green function,

g00pzq “

π
ż

0

dk1

π
. . .

π
ż

0

dkdim

π

1

z ` cospk1q ` . . .` cospkdimq
,

and the band edges into equation (II.12). Then, we obtain the critical impurity strengths,
which are depicted in table 2. In one and two dimensions, a localized state is generated

1 2 3 4 5 6
|V|

1

2

3

4

5

6

|E|

dim=1

dim=2

dim=3

dim=4

dim=5

Figure 10: Eigenenergy E for varying impurity strength V and dimension on the
hypercubic lattice

for any impurity. In higher dimensions, a certain threshold has to be overcome. The
eigenenergy depends monotonously on the impurity strength as depicted in the plot of
figure 10. It starts from the point p|Vc|, |EpVcq| “ dimq and then it converges to the
identity |E| “ |V |. To get a nontrivial limit in infinite dimensions, the hopping needs to
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be scaled by t Ñ t˚{
?

dim.57 Inserting the band edge into the scaled Green function
gives pt˚ “ ´1q

g00p
?

dimq “

π
ż

0

dk1

π
. . .

π
ż

0

dkdim

π

ˆ

?
dim`

cospk1q
?

dim
` . . .`

cospkdimq
?

dim

˙´1

“
1

?
dim

π
ż

0

dk1

π
. . .

π
ż

0

dkdim

π

˜

dim
ÿ

n“1

1` cospknq

dim

¸´1

“
1

?
dim

8
ż

0

dλ

˜ π
ż

0

dk

π
e´

λ
dim

p1`cospkqq

loooooooooomoooooooooon

“1´ λ
dim

`Op λ2

dim2 q

¸dim

“
1

?
dim

8
ż

0

dλ e´λ `Opdim´1
q “

1
?

dim
`Opdim´1

q .

Therefore, the critical impurity strength is

|Vc| “
1

g00p
?

dimq
“
?

dim`Op1q .

|Vc| diverges in the limit of infinite spatial dimensions for the tight-binding Hamiltonian,
and therefore a single impurity does not induce a localized state. Generally, the local
Green function g00pzq is solely determined by the density of states (d.o.s.). Any d.o.s.
with finite bandwidth can be represented in infinite dimensions by a set of hopping
amplitudes, although long-ranged hopping amplitudes are typically required.71

Next, we derive from the d.o.s. whether there is a finite Vc or not. The d.o.s. in one to
three dimensions is diverse as depicted in figure 11. Because, Vc is computed by the
Green function near the band edges, the particular behavior of ρpεq there has great
influence on Vc. In one dimension ρpεq diverges, in two dimensions it becomes finite and
in three dimensions it vanishes. It is easy to show that a finite d.o.s. at the band edge
results in a logarithmic divergence,

g00pεmin ´ δq “ ´

εmax´εmin
ż

0

d∆ε
ρpεmin `∆εq

∆ε` δ
“ Oplogpδqq for 0 ă ρpεq ă 8 .
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Figure 11: Density of states for the hypercubic lattice

This leads to a vanishing Vc with equation (II.12). We conclude that the d.o.s. needs
to vanishes at the bandedges to result in a finite Vc. We investigate only systems with
a symmetric d.o.s. , which gives the same critical impurity strength for attractive and
repulsive impurities. For nonsymmetric d.o.s. , we obtain distinct Vc for attractive and
repulsive impurities. A finite Vc leads to two different post-quench regimes, which we
investigate in the next section.

e) Evaluation and numerical procedure

We have all single-particle eigenstates and an appropriate basis. This enables us to
evaluate our time-resolved observable. Inserting the shell-symmetric basis transforms
our quantity from equation (II.1) to

xr|e´itpĤ0`V̂ q|Φky “

r
ÿ

n“0

αprqn x0|Ĥ
n
0 e´itpĤ0`V̂ q|Φky .

The propagator e´itpĤ0`V̂ q will be replaced by the sum over all eigenstate projectors
times their complex phases. The extended states always contribute, and the localized
state contributes if the impurity is strong enough. We consider only single-band systems
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and restrict ourselves to attractive impurities. The unitary time-evolution operator for
our single-particle states becomes

x0|Ĥn
0 e´itpĤ0`V̂ q|Φky “ x0|ΦkyΦ

loc
n pεk, tqΘp|V | ´ |Vc|q ` x0|ΦkyΦ

ext
n pεk, tq ,

x0|ΦkyΦ
loc
n pεk, tq “ x0|Ĥ

n
0 |Ψlocye

´itE
xΨloc|Φky ,

x0|ΦkyΦ
ext
n pεk, tq “

ÿ

k1

x0|Ĥn
0 |Ψk1ye

´itεkxΨk1 |Φky .

Inserting the impurity eigenstates gives

x0|ΦkyΦ
loc
n pεk, tq “ x0|

Ĥn
0

E ´ Ĥ0

|0y
e´itEx0|Φky

pE ´ εkqx0|pE ´ Ĥ0q
´2|0y

,

x0|ΦkyΦ
ext
n pεk, tq “

ÿ

k1

x0|Φk1ye
´itεk1

˜

εnk1 `
V x0|Ĥn

0

´

εk1 ` iδ ´ Ĥ0

¯´1

|0y

1´ V g00pεk1 ` iδq

¸

ˆ

ˆ

xΦk1 |Φky `
V xΦk1 |0yx0|Φky

p1´ V g00pεk1 ´ iδqqpεk1 ´ iδ ´ εkq

˙

.

First, the delta function xΦk1 |Φky with the sum over all k1 gives a term with constant
amplitude in time. Next, we use

ÿ

k1

|x0|Φk1y|
2fpεk1q ÝÑ

ż

dε ρpεqfpεq

to turn the k1 summation into an energy integration

Φloc
n pεk, tq “ ´

gnpEqe
´itE

pE ´ εkqg10pEq
, gnpzq “ x0|Ĥ

n
0

´

z ´ Ĥ0

¯´1

|0y , (II.13)

Φext
n pεk, tq “ e´itεk

ˆ

εnk `
gnpεk ` iδqV

1´ V g0pεk ` iδq

˙

` V

ż

dε
ρpεqεne´itε

p1´ V g0pε` iδqqpε´ εk ´ iδq

` V 2

ż

dε
ρpεqgnpε´ iδqe

´itε

p1´ V g0pε` iδqqp1´ V g0pε´ iδqqpε´ εk ´ iδq
. (II.14)
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We derive the Green functions gnpzq for the shell-symmetric states from the local Green
function g00pzq “ g0pzq. We iterate the simple identity,

εn

z ´ ε
“
zεn´1

z ´ ε
´ εn´1 ,

and can compute these specific Green functions with the identity

gnpzq “

ż

dε
ρpεqεn

z ´ ε
“ zng0pzq ´

n´1
ÿ

m“0

εmzn´1´m , (II.15)

where εn are the moments from equation (II.11). Numerically, it is hard to compute an
integration next to a pole. Thus, we remove the pole with a “dressed” time derivative,

e´itεkBte
itεkΦext

n pεk, tq “ ´iV

ż

dε
ρpεqe´itε

1´ V g0pε` iδq

ˆ

εn `
V gnpε´ iδq

1´ V g0pε´ iδq

˙

. (II.16)

We then perform the time integration numerically. We obtain the expectation value for
the Fermi sea by integrating over all occupied energies

xn̂ryt “

εF
ż

εmin

dε ρpεq

ˇ

ˇ

ˇ

ˇ

ˇ

r
ÿ

n“0

αprqn
“

Φloc
n pεk, tqΘp|V | ´ |Vc|q ` Φext

n pεk, tq
‰

ˇ

ˇ

ˇ

ˇ

ˇ

2

. (II.17)

This is our complete evaluation procedure. If g0pε˘ iδq is analytically available, then we
compute the energy integration in the right-hand side of equation (II.16) numerically.
This has to be done for a set of times ti and n. The times ti have to span a fine grid
as we time integrate it after multiplying it with eitεk . The final step is to perform the
energy integration in equation (II.17) numerically. Into the computation enters only the
d.o.s. ρpεq and not the full information of the lattice. So we obtain identical results for
two different lattices with the same d.o.s. . In the outlook subsection 6.a), we present
the computational procedure in the single-site basis. The scheme can be applied to
arbitrary lattices as long as the Green function is available.
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4 Results for time-dependent quantities

This section is dedicated to our explicit results, and it is structured in the following.
The transient behavior of single-particle states is discussed first. Then, we observe
two distinct long-time regimes, which we analytically deduce. From that, we compute
the Fermi-sea expectation values for the transient and the long-time limit. Next, we
investigate the wave-front propagation followed by the subsection concerning the long-
time Friedel oscillations. Finally, we will compare it to the thermal expectation value
and obtain two physically different long-time regimes.
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Figure 12: Time-dependent single-particle expectation values for the Bethe lattice
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a) Single-particle expectation values

We begin with the density change caused by single occupied states

|Φrpεk, tq|
2
“

ˇ

ˇ

ˇ

ˇ

ˇ

r
ÿ

n“0

αprqn
“

Φext
n pεk, tq `Θp|V | ´ |Vc|qΦ

loc
n pεk, tq

‰

ˇ

ˇ

ˇ

ˇ

ˇ

2

.

Examples for the Bethe lattice are displayed in figure 12. Generally, we observe initial
oscillations. They relax for the examples with V “ ´1

4
and Z “ 3,8, which is the case

|V | ă |Vc|. We have the case |V | ą |Vc| in the four other plots, and the oscillations
become steady. We conclude that the localized state is responsible for these undamped
oscillations.

Next, we investigate the long-time behavior analytically. Φext
n pεk, tq contains three

terms, and two of them contain an explicit energy integration. We choose a new integra-
tion path in the lower complex plane. We have to handle the infinitesimal shift in the
complex plane ˘iδ appropriately, which leads to the following result:

Φext
n pεk, tq “ e´itεk

ˆ

εnk `
gnpεk ` iδqV

1´ V g0pεk ` iδq

˙

` V

ż

Lpdq

dz
ρpzqzne´itz

p1´ V g0pzqqpz ´ εkq

` V 2

ż

Lpdq

dz
ρpzqpgnpzq ` i2πρpzqqe

´itz

p1´ V pg0pzq ` i2πρpzqqqp1´ V g0pzqqpz ´ εkq
.

The integration path Lpdq is displayed in figure 13. The parameter d is a real, positive
and finite number. Therefore, the path must go below the real axis. When we take the

<tεu

=tεu

εmin

εmin ´ id εmax ´ id

εmax

Lpdq

Figure 13: Complex integration path Lpdq

39



II DYNAMICAL FRIEDEL OSCILLATIONS

limit tÑ 8, the two integration terms vanish due to e´itz with Imtzu ă 0. Generally,
the integration over an integrable function with oscillating factor e´itε vanishes with t´1,

εmax
ż

εmin

dε fpεqe´itε
P.I.
“ i

„

fpεq
e´itε

t

εmax

εmin

´ i

εmax
ż

εmin

dε f 1pεq
e´itε

t
“ Opt´1

q . (II.18)

It decays faster if fpεminq “ fpεmaxq “ 0. Replacing the contribution of the two
integration terms with Opt´1q results in

Φrpε, tq “
r
ÿ

n“0

αprqn

„

e´itε
ˆ

εn `
gnpε` iδqV

1´ V g0pε` iδq

˙

´
ΘpVc ´ V qgnpEqe

´itE

pE ´ εqg10pEq



`Opt´1
q . (II.19)

If there is no localized state, then the expectation value relaxes to a constant value.
Otherwise there are steady oscillations with frequency ω “ pE ´ εkq. The qualitative
behavior is determined by the case |V | ž |Vc|. The density change is an analytic function
in its parameters even if we cross the point |V | “ |Vc|. Hence, the relaxation time
increases in the proximity of the critical impurity strength. The quantitative values
strongly depend on the actual values of V and Z. There is a faster relaxation for Z Ñ 8

than for Z “ 3 and the same impurity strength because for Z “ 3 we are closer to
|Vc|. The oscillation frequency for the same θ decreases with increasing Z because the
energy difference determines it. The energy of the extended states is determined by θ
and is independent of Z, but the energy of the localized state decreases with increasing
coordination number Z.

We evaluate the density change in the first three states for the square lattice in figure
14. The prolonged oscillations appear to be small for the weaker impurity V “ ´1

2
.

This implies that the bound-state contribution is small itself. The long-time oscillations
are clearly visible for the stronger impurity V “ ´3

2
. We expect relaxation on the

simple cubic lattice in figure 15 as the dynamics are computed for |V | ă |Vc| “ 1.98.
For V “ ´1

2
all single-particle values relax quickly and for V “ ´3

2
some values do not

relax in the depicted time window pt ď 10q. Hence, we observe the increased relaxation
duration for quenching closer to |Vc|.
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Figure 14: Short-time dynamics of the single-particle expectation values for the square
lattice
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Figure 15: Short-time dynamics of the single-particle expectation values for the simple
cubic lattice
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b) Fermi-sea expectation values

Next, we examine the time-dependent expectation values for the Fermi sea. They are
computed from the single-particle values as described in equation (II.17). Examples for
the Bethe lattice are depicted in figure 16. The square and simple cubic lattice examples
are shown in figure 17. We observe the same qualitative behavior in all plots that the
density starts to oscillate and then relaxes. For the weak impurity case |V | ă |Vc|, we
expect this from the single-particle behavior in figure 12, 14 and 15.
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Figure 16: Time-dependent Fermi sea expectation values at half filling

The steady oscillations have different frequencies for |V | ą |Vc| and different εk. Thus,

43



II DYNAMICAL FRIEDEL OSCILLATIONS

the integration cancels them out in equation (II.17), which governs relaxation with
Opt´1q due to equation (II.18). Furthermore, we insert equation (II.19) and the long-time
limit becomes

xn̂ryt “

εF
ż

εmin

dερpεq

»

–

ˇ

ˇ

ˇ

ˇ

ˇ

r
ÿ

n“0

αprqn

ˆ

εn `
gnpε` iδqV

1´ V g0pε` iδq

˙

ˇ

ˇ

ˇ

ˇ

ˇ

2

`Θp|V | ´ |Vc|q

ˇ

ˇ

ˇ

ˇ

ˇ

r
ÿ

n“0

αprqn
gnpEq

pE ´ εqg10pEq

ˇ

ˇ

ˇ

ˇ

ˇ

2
fi

fl`Opt´1
q .

We identify the first term as the density of the extended post-quench eigenstates |Ψky

below the Fermi energy. The second term is the density of the bound state times its
occupation at the quench,

xn̂ryt “
ÿ

εkăεF

|xr|Ψky|
2
`Θp|V | ´ |Vc|q|xr|Ψlocy|

2
xn̂locy0 `Opt

´1
q . (II.20)

We derived equation (II.20) for the shell-symmetric states |ry, but it is also valid for
any non shell-symmetric state |NSy,

xn̂NSyt “
ÿ

εkăεF

| xNS|Ψky
looomooon

“xNS|Φky

|
2
`Θp|V | ´ |Vc|q| xNS|Ψlocy

loooomoooon

“0

|
2
xn̂locy0 .

The eigenstates act as projectors, and therefore equation (II.20) is valid if we replace |ry
with an arbitrary local state. The derivation of the long-time limit is one of the main
results in this thesis and is further investigated in subsection d).

The examples in figure 16 and 17 are at half-filling. We observe three trends depending
on the distance to the impurity m. First, the sign of the final density change alternates.
Second, the absolute value of the relaxation plateau decreases. Third, the response time
to the impurity increases with distance m. These decaying density oscillations with
respect to m are Friedel oscillations. A light-cone effect governs their dynamic creation
as we further analyze in the following subsection.
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Figure 17: Short-time dynamics of the Fermi sea expectation values

c) Wave-front propagation

The on-site energy change at the quench disrupts the whole lattice, and this effect travels
like a light cone by the hopping matrix. In figure 18, we depict the light-cone effect for
the Bethe lattice by adding the distance to the normalized change. When the light cone
reaches shell m, then the density starts its dynamic. This is no strict statement but
more of a general trend. Spontaneously, we would connect the velocity of the cone v to
the Fermi-velocity on the Bethe lattice,

vF pθF q “
BEpθq

Bθ

ˇ

ˇ

ˇ

ˇ

θ“θF

“ 2 sinpθF q .

The light-cone velocity is independent of the filling in figure 18, and thus v is generally
not equal to the Fermi velocity vF pθF q. All shell-symmetric states of the system are
affected by the impurity quench and not only the states at the Fermi energy. Thus, the
light cone should be connected to the maximum of the Fermi-velocities,

v “ max
θF

vF pθF q “ 2 .
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Figure 18: Propagation of the Friedel oscillations on the Bethe lattice. The orange line
is the Fermi velocity and the red line the maximal Fermi velocity.

This statement is valid for the Bethe lattice, as we see in the four plots of figure 18. For
the square lattice in figure 19, the slope of the light cone is « 2 for all fillings. For the
simple cubic lattice, the slope is 3 in figure 20. The Fermi velocity for the hypercubic
lattice is

vF pkq “
d
ÿ

n“1

en sinpknq . (II.21)

Its maximum value for the square lattice is
?

2 and for the simple cubic
?

3. Conse-
quently, the light-cone velocity in the shell-symmetric space is not equal to the maximum
of the real-space Fermi velocities for these two lattices. We found in all lattices that the
light-cone velocity is independent of the filling. Nevertheless, we were not able to find a
congruent connection to the Fermi velocity. The light-cone velocity is equal to the half
bandwidth in all examples. Probably, this statement is valid for our examples, but not
in general.
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Equation (II.21) gives the Fermi velocity in real space, and we analyzed the cone
velocity v in the space of shell-symmetric states. For the Bethe lattice, each shell-
symmetric state occupies sites with a fixed distance to the central site. Thus, there
is a unique definition of distance between a shell-symmetric state and the central site,
and thus gives a clear value for the velocity. For the square or simple cubic lattice, on
the other hand, the shell-symmetric states occupy various distances to the central site.
Hence, the definition of the distance between two shell-symmetric states is not unique.
Consequently, we should not connect the Fermi velocity in real space to the cone velocity
for the shell-symmetric states. To predict the light cone in real space, we have to study
our problem in the single-site basis. We suggest applying the computational scheme
from the outlook subsection 6.a) to tackle this task.
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Figure 19: Propagation of the Friedel oscillations on the square lattice. The red line has
a slope of 2
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Figure 20: Propagation of the Friedel oscillations in the simple cubic lattice. The red
line has a slope of 3

d) Steady-state Friedel oscillations

We learned that the Friedel oscillations relax to static values after the quench. We
analyze in this section the details of this long-time limit. Its computation is easier than
the real-time values because the numerical expensive terms vanish. At half-filling, the
sign of density change alternates with r. We observed this already during the short-time
section in figures 16 and 17. This change of the sign corresponds to the shortest possible
oscillation length.

In figure 21 and 22, we see examples of long time solutions and observe that the
oscillations’ length strongly depends on the filling. The oscillation length increases away
from half-filling and becomes quite smooth for nearly empty or nearly full bands. The
power-law decay of the amplitude is similar in all examples. We conclude that the
density change at the central site determines the scale of the whole Friedel oscillations.
The density increase is two to three times greater in the plots on the right side than
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Figure 21: Friedel oscillations in the long-time limit for the Bethe lattice

those on the left side in figures 21 and 22. On the right side, we have strong impurities
V “ ´3

2
and on the left weak ones V “ ´1

4
or ´1

2
. Thus, the impurity strength has a

strong quantitative impact.

The impurity-site density varies with filling and impurity strength, as seen in figure 23.
There arises a maximum for an intermediate impurity strength. It is more pronounced
for low fillings, but its position is relatively independent of filling. To maximize the
Friedel oscillations, we have to choose an intermediate impurity strength. Furthermore,
the band should be at most half-filled for attractive impurities. Due to particle-hole
symmetry, it should be at least half-filled for repulsive impurities. We note here that
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Figure 22: Friedel oscillations in the long-time limit for the square and simple cubic
lattice

the long time-limit expectation value is not an analytic function at the point |V | “ |Vc|.
The expectation values converge differently in the two distinct regimes |V | ž |Vc|.

e) Regular vs. generalized thermalization

On the one hand, we observe a decrease in density after a certain impurity strength in
figure 23. But on the other hand, we expect increased density at the impurity site for
more attractive impurities in the thermal expectation value. Thus, there is a qualitative
deviation between the long-time limit and the thermal value.

Now, we calculate the corresponding thermal expectation value. The quench inserts
energy in the scale „ V , thus the average energy per site changes by „ V {L. Therefore,
we are still at zero temperature in the thermodynamic limit, and the thermal expectation
value is computed for the many-particle ground state. All extended single-particle states
below the Fermi-energy contribute. This is the same extended state contribution as
in equation (II.20) for the long-time limit. If the impurity does not induce a localized
state, then our observable relaxes to its thermal value. The localized state is occupied
in the ground state for a an attractive impurity as its energy is below the band. For a
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Figure 23: Impurity strength effect for different fillings

repulsive impurity, it is not occupied. Consequently, our observable does not thermalize
for strong impurities |V | ą |Vc| because the bound state is always partially occupied in
the long-time limit.

If no bound state exists, the diagonal ensemble expectation value, which captures the
long-time limit, is equal to the ground state or thermal expectation value with β Ñ 8.
In the presence of a bound state, the thermal ensemble does not capture the correct
values, and a generalized Gibbs ensemble (GGE)10–13 is necessary. The bound-state
occupation number is an additional conserved quantity. Thus, the GGE is proportional
to

ρ̂GGE ∝ e´βĤ´µN̂ ˆ

"

1 |V | ă |Vc|

n̂z1xFS|n̂z1 |FSy |V | ą |Vc|
.

In many nonequilibrium problems of integrable models, generalized thermalization is
observed.38,72 This means that the observables’ long-time limit is captured by a GGE
constructed from a set of conserved quantities. On the other hand, in most publications,
finite systems are studied, in which the deviation decreases with the number of lattice
sites L.12,13,38,72 We study our problem in the thermodynamic limit and an exact agree-
ment of the long-time limit and the GGE prediction is possible and indeed observed here.
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Figure 24: Comparison of long-time limit and thermal expectation value

The quantitative comparison of long-time limit and thermal value is plotted in figure
24. At the central site, the density increases monotonously for the thermal expectation
value and peaks for the long-time limit at an intermediate impurity strength. For
the sites in the vicinity of the impurity, we observe a similar trend that the density
of the long-time limit is decreased compared to the thermal expectation value. This
deviation decreases with distance to the central site. This phenomenon is inverted
for repulsive impurities. The density of the long-time limit is higher than that of the
thermal expectation value. Thus, the density after a strong repulsive impurity V ą Vc
quench is higher in the long-time limit than in the ground state. We consider the
regime |V | ă 1 in the plots with Z “ 2 and dim “ 2 in figure 24. There the deviation
between the thermal and long-time value is surprisingly small. We conclude that a weak
impurity inducing a localized state lead to no exact thermalization, but we are close to it.

We study our problem in the shell-symmetric basis and not in the single-site basis.
Thus, the density change depicted in all figures is only for the impurity site equal to
an actual site. Our method can generally compute the values for the remaining sites.
On the Bethe lattice, the conversion is simple. As equation (II.5) tells us, the density
change at a single-site is smaller by a factor of Nr than the density change of the

52



4 RESULTS FOR TIME-DEPENDENT QUANTITIES

shell-symmetric state. For Z “ 2, it is only a constant factor, but for Z “ 3 this term
grows exponentially with r, and for Z Ñ 8, the local density change vanishes except for
the central site. Hence, for Z ě 3, the effect of Friedel oscillations on each site decrease
exponentially, but the cumulative effect in a complete shell decays only with a power law.

On the square lattice and the simple-cubic lattice, the conversion is more evolved.
First, the overlap of the investigated site |iy with all shell-symmetric states |ry has to
be computed. Second, we sum over the change in all shell-symmetric states to obtain
the change on the site |iy,

xi|φkptqy ´ xi|φkp0qy “
ÿ

r

xi|ry pxr|φkptqy ´ xr|φkp0qyq .

For the complete representation of site |iy, the non-shell-symmetric states are also
required, but these are constant in time for our nonequilibrium problem.

In conclusion, we can observe two distinct long-time regimes after the quench. In
the first case, when no localized state is generated, our observables relax to their thermal
values. On the other hand, the localized state shifts the situation into the second case,
and our observables relax to values derived from a GGE. Hence in our discussion of differ-
ent systems, the most important question is whether a localized state is generated or not.

The GGE captures only the long-time limit for an extensive particles number as the
Fermi sea. If we have a finite number of particles, then our observables oscillate like
in figure 12, 14 and 15. We want to highlight that energy, particle, and bound state
occupation conservation are enough to construct the correct GGE. This poses the
question, under which circumstances the GGE after a local quench is computed from a
few conserved quantities and not from an extensive amount. After global quenches, we
generally need an extensive set of conserved quantities13 in an integrable system.

We return to our initial motivation to compare our results with the work of J. M.
Zhang et al.54–56 First, we predict dynamical Friedel oscillations, which were observed
for the chain,54 for arbitrary lattices. Second, we also observe a density plateau after
the quench.55 We do not encounter the cusps in the single-particle states56 because they
first appear at the recurrence time, t “ R on the Bethe lattice. We cannot access this
time scale because we first applied the limit RÑ 8. Thus, we are in the regime t ! R
even if we take the limit tÑ 8. We do not observe the later plateaus55 due to the same
time-regime argument.
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If we wanted to access this time scale, we would need to evaluate the finite Cay-
ley tree instead of the Bethe lattice. One option is to tackle this task by constructing the
exact eigenstates for finite Cayley trees. The other is to adapt our analytic evaluation
to keep the times t „ R finite. Finally, it is more evolved to take the rim into account
for the finite square and simple cubic lattice. There, the impurity quench destroys the
symmetry of the system.
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5 Summary for local quenches

We investigated the nonequilibrium dynamics after an on-site energy quench. The local
density is our observable of choice. When only a single particle occupies the lattice,
two very distinct regimes are observed. For weak impurities, the observables initially
oscillate and then relax to constant values. For strong impurities, the oscillations become
steady with constant amplitude and frequency. this emergence of a localized state is
responsible for the two qualitatively different regimes. We only encounter the strong
impurity regime for the special case of the chain pZ “ 2q and the square lattice.

If the initial state is the Fermi sea, a many-particle state, then the qualitative be-
havior is similar in both regimes. Integrating over the different oscillation frequencies
cancels them out, and relaxation occurs in both regimes. The impact of the impurity
travels in a light cone through the lattice. The velocity of this cone is independent of
filling. Therefore, the cone velocity is generally not equal to the Fermi velocity. Our
investigation indicates that the velocity is equal to the maximum of all possible Fermi
velocities. The physical reason is that the impurity affects all single-particle eigenstates
and is not restricted to the states at the Fermi surface.

A comparison of the thermal and long-time expectation value still distinguishes the
two regimes. In the weak-impurity regime, the local density thermalizes. However, the
thermal and long-time expectation values differ from each other for strong impurities.
We observe Friedel oscillation for the thermal and the time-dependent expectation values,
and their oscillation length strongly depends on the filling. The Friedel oscillations
inherit the thermalization for weak impurities and the lack of thermalization in presence
of the bound state. We conclude that a single state outside the band inhibits thermal-
ization for noninteracting systems, and the observables relax to a generalized Gibbs
ensemble.10–13

As discussed in the next chapter, self-consistent and time-dependent perturbation
theory73,74 predicts thermalization of the occupation numbers for small interaction
quenches. Thus, we also expect thermalization if we add a small interaction to our
Hamiltonian. For weak impurities, the time scale of thermalization is the inverse band-
width, because it happens already without interactions. For strong impurities, the
interactions are necessary for thermalization, and thus the thermalization time scale
will increase. Bertini et al.75 developed a method to compute the relaxation dynamics
of local observables for weakly interacting systems. They predict a relaxation time scale
of t “ τ{g for local observables. We expect thermalization of the local density in this
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time scale t “ τ{g by adding weak interactions. This scenario for thermalization in
presence of a bound state would be worthwhile further investigate. In any case, weakly
interacting systems with impurities are expected to thermalize on very distinct time
scales for the two regimes of weak and strong impurities.

For our evaluations, we constructed all eigenstates for a single impurity potential in
the thermodynamic limit. This is possible because the symmetry separates the Hilbert
space into distinct subspaces with respect to the Hamiltonian. In the shell-symmetric
basis Ĥn

0 |0y, we have an effectively one-dimensional system. This is strictly true for
the Cayley tree or in the thermodynamic limit for other lattices. The computation
in the shell-symmetric basis requires only the density of states. Any density of states
with finite bandwidth can be represented in infinite dimensions by a set of hopping
amplitudes, although long-range hopping amplitudes are typically required.71 Thus, the
dimensionality of the lattice is not apparent in the time evolution in the shell-symmetric
states. With full information about the lattice, we can compute the time evolution
for any site from the time evolution of the shell-symmetric states. In conclusion,this
inhomogeneous problem was solved to a large extent here. However, in order to study the
problem directly in the single-site basis, we need to generalize our evaluation procedure.
This is done in the outlook subsection 6.a). A further generalization is necessary for the
study of periodically driven or ramped impurities. We give a formal solution to this
problem in outlook subsection 6.b) and verify it for the quench. Our method could also
be used to compute additional quantities, e.g., correlation functions.76

it is also possible to study finite size effects. We have the same eigenstates for a
finite Cayley tree, but we must to compute the eigenvalues explicitly. For a large but
finite Cayley tree, one could evaluate the overlap of states.77 Due to the orthogonality
catastrophe,78 we expect it to vanish in the infinite size limit. Furthermore, we could
then observe the reflection of the wavefront at the rim of the Cayley tree may be observed.
This type of reflection is known to lead to cusps in the dynamics of single-particle states56

and steps in the tight-binding chain’s local density.55 We expect analogous effects for
the finite Cayley tree. For the square or simple cubic lattice, the computation of finite
systems is more tedious because its surface destroys the advantageous symmetry.
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6 Technical Outlook

a) Site-resolved computation

Here, we show an alternative way to derive our evaluation formulas (II.13) and (II.14).
It will not depend on a particular basis and is applicable in the single-site basis. We
start from

Φn,kptq “ xn|e
´itpĤ0`V̂ q|Φky

and apply the Laplace transformation

LtÑxpΦn,kptqq “

8
ż

0

dt e´txxn|e´itpĤ0`V̂ q|Φky “ ixn|
´

ix´ Ĥ0 ´ V̂
¯´1

|Φky

“ i
ÿ

l

Gnlpixqxl|Φky .

Now, we obtained an expression based on the Green function with impurity

Gnlpzq “ xn|
´

z ´ Ĥ0 ´ V̂
¯´1

|ly .

Next, we apply the cavity formula,

Gnlpzq “ gnlpzq `
gn0pzqV g0lpzq

1´ V g00pzq
with gnlpzq “ xn|

´

z ´ Ĥ0

¯´1

|ly ,

and rewrite the Laplace transformed in terms of the Green function without impurity
gnmpzq,

LtÑxpΦn,kptqq “ i
xn|Φky

ix´ εk
`

ign0pixqV x0|Φky

pix´ εkqp1´ V g00pixqq
.

For the inverse Laplace transformation, we utilize the Mellin’s inverse formula,

Φn,kptq “ L ´1
xÑtpLtÑxpΦn,kptqqq “

i8`γ
ż

´i8`γ

dx

2πi
extLtÑxpΦn,kptqq . (II.22)

The parameter γ has to be chosen larger than the real parts of all poles. The poles of
Gnlpixq lie all on the imaginary axis. Thus, γ ą 0 is sufficient. We rotate the complex
plane by substitution of the integration variable x “ ´iz.We choose the infinitesimal
but positive number δ for γ and obtain

Φn,kptq “ ´

8`iδ
ż

´8`iδ

dz

2πi
e´izt

ˆ

xn|Φky

z ´ εk
`

gn0pzqV x0|Φky

pz ´ εkqp1´ V g00pzqq

˙

.
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II DYNAMICAL FRIEDEL OSCILLATIONS

Next, we close the integration path by adding a half circle in the lower complex plane.
Thus, we use the integration path L, which is depicted in figure 25. If the eigenvalue
equation 1 “ V g00pEq (II.10) is fulfilled, then an additional pole appears at z “ E. The
previous expression now splits into two terms,

Φn,kptq “ θp|V | ´ |Vc|qΦ
loc
n,kptq ` Φext

n,kptq .

The contribution of the localized state is computed by the residue theorem and gives

<tzu

=tzu

R ` iδ´R ` iδ
LpRq

εmin εmaxE

Figure 25: Complex integration path LpRq to illustrate L “ lim
RÑ8

LpRq

the same term as in (II.13),

Φloc
n,kptq “

x0|ΦkyV gn0pEqe
´itE

E ´ εk
Res

ˆ

1

1´ V g00pzq
, E

˙

“ ´
x0|Φkygn0pEqe

´itE

pE ´ εkqg100pEq
.
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6 TECHNICAL OUTLOOK

The branch cut along the band gives the extended states’ contribution Φext
n,kptq. We

compute it by integrating slightly above the band from left to right and slightly below
the band from right to left,

Φext
n,kptq “ xn|Φkye

´itεk ´

εmax
ż

εmin

dε

2πi

ÿ

s“˘1

s x0|Φkye
´itpε`isδqV gn0pε` isδq

p1´ V g00pε` isδqqpε` isδ ´ εkq

“

ˆ

xn|Φky `
x0|Φkygn0pεk ` iδqV

1´ V g00pεk ` iδq

˙

e´itεk

´

εmax
ż

εmin

dε

2πi

x0|Φkye
´itε

pε´ iδ ´ εkq

ˆ

V gn0pε` iδq

1´ V g00pε` iδq
´

V gn0pε´ iδq

1´ V g00pε´ iδq

˙

.

(II.23)

To obtain the second line from the first, we assumed e´itpε˘δq “ e´itε and used the
identity,

ż

dx

2πi

fpxq

x` iδ
“ ´fp0q `

ż

dx

2πi

fpxq

x´ iδ
.

When we insert our shell-symmetric basis |ny “ Ĥn
0 |0y and use the identities

g00pε´ iδq ´ g00pε` iδq “ 2πiρpεq

and (II.15), we recover the result from (II.14). Thus, this section is an additional check
for our evaluation formula. The advantage of this derivation is that we do not assume
specific gnlpzq. Hence, we can insert arbitrary ones, e.g., the Green functions from any
one single site to another single site. Therefore, we found a way to study our quench
problem in an arbitrary single-particle basis.
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II DYNAMICAL FRIEDEL OSCILLATIONS

To compute the density change at a specific site, we sum over all k and have a problem
of the general form,

xn̂nyt “
ÿ

εkăεF

|xn|Φky ` x0|Φkyfpεkq|
2

“
ÿ

εkăεF

|xr|Φky|
2
` |x0|Φkyfpεkq|

2
` 2< tfpεkqx0|ΦkyxΦk|nyu

“

εF
ż

εmin

dε ρnnpεq ` ρ00pεq|fpεq|
2
` 2ρ0npεq< tfpεqu ,

ρnlpεq “
ÿ

k

δpε´ εkqxn|ΦkyxΦk|ly .

We require the site-dependent ρrlpεq and obtain them from the imaginary part of the
Green functions,

=tgnlpε´ iδqu “ =txn|
1

ε´ iδ ´ Ĥ0

|lyu

“
ÿ

k

=t 1

ε´ iδ ´ εk
uxn|ΦkyxΦk|ly

“ π
ÿ

k

δpε´ εkqxr|ΦkyxΦk|ly “ πρnlpεq .

If the Green functions grlpzq are available, then we can compute the dynamic after an
impurity quench in the corresponding single-particle basis. The single-site basis results
are particularly suited for the study of the light-cone effect. Moreover, this procedure
enables us to study the light-cone velocity in real space.

As an outlook, this method could be applied to the square lattice. There, the Green
functions are analytically available,79 and we can compute site-resolved dynamical
Friedel oscillations. This allows us to study the cone velocity in different directions.
First, the Fermi velocity in the diagonal direction is higher than in the direction of
the lattice axis. Hence, we expect a higher velocity along the diagonal than along the
lattice axis. The second feature, we intend to analyze is the Friedel oscillations. Their
wavelength and decay rate should depend on the direction as well.

b) From quenched to ramped and driven impurities

Here, we give an outlook on how to compute the density modulations after continuously
increasing the impurity strength. We obtain a formal solution (II.26), which leads to a
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6 TECHNICAL OUTLOOK

differential equation (II.27). At the end of this outlook section, we insert the quench as
a ramp protocol, and the result is congruent with the previous section.

Formal solution

The ramp Hamiltonian is

Ĥptq “ Ĥ0 ` fptqV̂ with fpt ă 0q “ 0 .

We work in the shell-symmetric basis, and the quantities of interest are

Φn,kptq “ x0|Ĥ
n
0 Ûptq|Φky .

The differential equation for the propagator is

i
B

Bt
Ûptq “ pĤ0 ` fptqV̂ qÛptq .

From that, we deduce coupled differential equations,

i
B

Bt
Φn,kptq “ Φn`1,kptq ` fptqV εnΦ0,kptq .

By induction, it is easy to show that

Φn,kptq “

˜

ˆ

i
B

Bt

˙n

´

n´1
ÿ

m“0

ˆ

i
B

Bt

˙n´1´m

V fptqεm

¸

Φ0,kptq . (II.24)

Therefore, it is sufficient to compute Φ0,kptq because all other Φn,kptq are easily derived
from it. Next, we impose the boundary conditions that far away sites are not affected
by the impurity. The state Ĥn

0 |0y captures the earliest impact for sites that are n hops
away from the impurity. Hence, we choose the boundary condition as

Φn,kptq “ x0|Ĥ
n
0 e´itĤ0 |Φky “ εnke´itεkx0|Φky as nÑ 8 (II.25)

Inserting the boundary condition (II.25) into (II.24) gives

εnke´itεkx0|Φky “

˜

ˆ

i
B

Bt

˙n

´

n´1
ÿ

m“0

ˆ

i
B

Bt

˙n´1´m

V fptqεm

¸

Φ0,kptq as nÑ 8 ,

e´itεkx0|Φky “

˜

1´
n´1
ÿ

m“0

ˆ

i
B

Bt

˙´1´m

V fptqεm

¸

Φ0,kptq as nÑ 8 .
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II DYNAMICAL FRIEDEL OSCILLATIONS

From the first to the second line, we integrated n times. When we take the limit nÑ 8,
we obtain the local Green function,

e´itεkx0|Φky “

ˆ

1´ g00

ˆ

i
B

Bt

˙

V fptq

˙

Φ0,kptq .

Inverting this equation gives us a formal solution to a general local ramp problem,

Φ0,kptq “

ˆ

1´ g00

ˆ

i
B

Bt

˙

V fptq

˙´1

e´itεkx0|Φky . (II.26)

Differential equation

We derive a differential equation from the formal solution (II.26). First, we multiply
our quantity by the inverse complex phase,

Φ̃0,kptq “ eitεkΦ0,kptq .

Then the εk terms cancel each other when we apply the time derivative

B

Bt
Φ̃0,kptq “ eitεk

«

B

Bt

ˆ

1´ g00

ˆ

i
B

Bt

˙

V fptq

˙´1
ff

e´itεkx0|Φky .

The time derivative of the operator is computed as

B

Bt

ˆ

1´ g00

ˆ

i
B

Bt

˙

V fptq

˙´1

“

8
ÿ

m“0

B

Bt

ˆ

g00

ˆ

i
B

Bt

˙

V fptq

˙m

“

8
ÿ

m“1

m´1
ÿ

l“0

ˆ

g00

ˆ

i
B

Bt

˙

V fptq

˙m´1´l

g00

ˆ

i
B

Bt

˙

V f 1ptq

ˆ

g00

ˆ

i
B

Bt

˙

V fptq

˙l

“

8
ÿ

m“0

ˆ

g00

ˆ

i
B

Bt

˙

V fptq

˙m

g00

ˆ

i
B

Bt

˙

V f 1ptq
8
ÿ

l“0

ˆ

g00

ˆ

i
B

Bt

˙

V fptq

˙l

“

ˆ

1´ g00

ˆ

i
B

Bt

˙

V fptq

˙´1

g00

ˆ

i
B

Bt

˙

V f 1ptq

ˆ

1´ g00

ˆ

i
B

Bt

˙

V fptq

˙´1

.

We insert it back into the previous equation and obtain the differential equation,

B

Bt
Φ̃0,kptq “ eitεk

ˆ

1´ g00

ˆ

i
B

Bt

˙

V fptq

˙´1

g00

ˆ

i
B

Bt

˙

V f 1ptqe´itεkΦ̃0,kptq . (II.27)
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Evaluation for quench protocol

Now, we test the formal expression (II.26) by inserting the step function as the ramping
protocol into equation (II.27). The integration gives

Φ̃0,kptq ´ Φ̃0,kp0
´
q “

t
ż

0´

dτ eiτεk
ˆ

1´ g00

ˆ

i
B

Bτ

˙

V fpτq

˙´1

g00

ˆ

i
B

Bτ

˙

V f 1pτqe´iτεkΦ̃0,kpτq . (II.28)

We insert on the right-hand side the identity of the delta function,

f 1pτq “ δpτq “

8
ż

´8

dω

2π
e´iτω .

For the quench, we can apply the approximations

Φ̃0,kpτq « Φ̃0,kp0
´
q “ x0|Φky , fpτq « fpτ ą 0q “ 1 .

If we shift ω away from the real axis, we can evaluate the derivatives and integration
with respect to τ in equation (II.28). We have to shift ω into the upper half of the
complex plane because then all poles are below the integration path,

Φ̃0,kptq ´ Φ̃0,kp0
´
q “ x0|Φky

8`iδ
ż

´8`iδ

dω

2π

e´itω ´ 1

´iω

g00pω ` εkqV

1´ g00pω ` εkqV
.

If we shift ω into the lower half of the complex plane, we obtain a trivial result. The
final step is to substitute ω “ z ´ εk, and we recover the result from the Laplace
transformation method (II.22).

This check confirms the validity of equations (II.26) and (II.27). The next step would
be developing a numerical procedure that computes the density due to an impurity,
which is continuously switched on or periodically driven.
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III Prethermalization induced by weak interactions

1 Introduction to the perturbative expansion

In this chapter, we start again from a translationally invariant system, but now the
perturbation is spatially homogeneous. Therefore, local interactions induce nontrivial
dynamics in the system as the hopping Hamiltonian is diagonal in reciprocal space. In
particular, we investigate two scenarios for driving of a correlated electron system. The
first one is interaction-driven and the second one is hopping-amplitudes-driven. In both
cases, all expectation values have trivial dynamics for the noninteracting state. We
will include the interactions perturbatively and the hopping terms nonperturbatively to
describe the prethermal regime.

Möckel and Kehrein established a method to capture the dynamics after a weak interac-
tion quench73,80 and applied it to the Hubbard model in infinite spatial dimensions. It
predicts a nonthermal steady state for intermediate times, which is called the prethermal
state. Later on, quasiparticle scattering governed by the Boltzmann equation45–47 sets
in, and a thermal distribution forms. We note that prethermalization can also be
understood on statistical grounds.81 Here, we address several open questions concerning
the prethermal steady state. While the prethermal state is a general feature and is
expected in most models, there exist counterexamples, e.g., the one- and two-dimensional
Hubbard model,82,83 which does not relax to a steady state for individual momentum
occupation numbers.

We tackle several model-independent questions in section 2. The first one is the
development of a general method. The initial approach was a leading-order interaction
expansion for continuous unitary transformations.73,80 The same result was reproduced
by evaluating Keldysh-Green’s function diagrams84 and by a single canonical transfor-
mation.85 The fundamental concept in these approaches is an expansion in interaction
strength. We apply the interaction representation in subsection a) and obtain the ex-
pression directly for arbitrary models, protocols, and observables. We evaluate the first
finite correction term and assign the observables into two categories. The observables
from the first category have a finite first-order correction. The first-order term of the
other category vanishes, and we thus compute the second-order term. The fundamental
difference between the two classes of observables is the number of convolutions in time:
First-order observables have one time convolution, and second-order observables have
two. This adds a memory effect to the second-order observables. Second, we construct
constants of motions for an interacting system from the adiabatic theorem.86–88 We
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build a generalized Gibbs ensemble (GGE),10–13 which describes the prethermalization
plateau85 after arbitrary driving.

We investigate interaction-driven problems in section 3, which are in particular quenches,73,80

ramps,84 and periodic drives.89 We define in subsection a) an effective nonequilibrium
protocol with prior adiabatic switching86–88 to include initial interacting states. We
evaluate the general terms for first- and second-order observables. We choose the
Hubbard model with infinite spatial dimension as our example model and compute its
expectation values in subsection b). The first investigated phenomenon is crossing points
in a transients as discussed in subsection c). The next one is the relaxation behavior in
subsection d). This is followed by the subsection concerning ramps e) as they bridge the
gap between adiabatic switching and quenching. The final subsection f) covers periodic
drives. Our findings in section 3 reproduce the results of previous work73,80,84,85,89 and
are more comprehensive in certain aspects.

The last and largest section 4 covers the prethermal dynamics after an electric field
pulse. It shows that an electric field pulse induces a prethermal steady state in weakly
interacting systems. Peierls’ substitution captures the external field, and therefore we
have a hopping amplitude-driven process. The methods of the previous sections need
to be adapted to this case. Generally, the computation becomes more cumbersome,
but our method includes all orders in electric field strength and is still perturbative in
interaction strength. The results indicate which order in interaction and field strength
is sufficient to capture the prethermal state.

In summary, this chapter predicts a generalization of previous approaches to describe
the prethermal state. Our method works for arbitrary time protocols and arbitrary
interacting initial states, leading to new applications of which some are discussed here.
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2 General expansion in interaction strength

a) Formal time integration

We first derive formal expressions for time-dependent observables. These steps are
similar in both following parts, but we use different representations. The interaction
representation will give us equations (III.5) and (III.7), which describe the prethermal
regime. These two formulas will be the main result of this subsection.

Schrödinger representation

We will express a Heisenberg operator in a commutator series. The time evolution of
a state is captured by the time evolution operator Ûptq. It has the initial condition
Ûp0q “ 1 and the differential equation p~ “ 1q

d

dt
Ûptq “ ´iĤptqÛptq .

Hence, we can write the Heisenberg equation of motion as

d

dt
Û :ptqÂÛptq “ Û :ptq

”

iĤptq, Â
ı

Ûptq .

We integrate the differential equation and obtain

Û :ptqÂÛptq “ Â`

t
ż

0

dt1 Û
:
pt1q

”

iĤpt1q, Â
ı

Ûpt1q . (III.1)

This integral equation (III.1) is valid for every operator Â. Therefore, Â is allowed to
be dependent on a parameter or a set of parameters. Thus, we can replace Â by the
right-hand side of equation (III.1) and receive

Û :ptqÂÛptq “ Â` i

t
ż

0

dt1

”

Ĥpt1q, Â
ı

` i2
t
ż

0

dt1

t1
ż

0

dt2 Û
:
pt2q

”

Ĥpt2q,
”

Ĥpt1q, Â
ıı

Ûpt2q .
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The operator rĤptnq, . . . rĤpt1q, Âs . . .s depends on n parameters and we iterate equation
(III.1) N times and obtain

Û :ptqÂÛptq “
N
ÿ

n“0

piqn
t
ż

0

dt1 . . .

tn´1
ż

0

dtn

”

Ĥptnq, . . .
”

Ĥpt1q, Â
ı

. . .
ı

` piqN`1

t
ż

0

dt1 . . .

tN
ż

0

dtN`1 Û
:
ptN`1q

”

ĤptN`1q, . . .
”

Ĥpt1q, Â
ı

. . .
ı

ÛptN`1q .

If Ĥptq is bounded such that the last term vanishes for N Ñ 8, this becomes

Û :ptqÂÛptq “
8
ÿ

n“0

piqn
t
ż

0

dt1 . . .

tn´1
ż

0

dtn

”

Ĥptnq, . . .
”

Ĥpt1q, Â
ı

. . .
ı

. (III.2)

Equation (III.2) is a series representation for an arbitrary Heisenberg operator. If we
apply the initial state from both sides, we obtain the time-dependent expectation value
as a series expansion.

Dirac representation

If our Hamiltonian consists out of an exactly solvable part Ĥ0ptq and a perturbation
gĤ1ptq, then we can apply the Dirac or interaction representation. Every operator is
dressed by the time-evolution operator with respect to Ĥ0ptq,

ÔIptq “ Û :0ptqÔÛ0ptq .

Thus, we are now interested in the transformation,

Ŝptq “ Û :0ptqÛptq .

Its differential equation is
d

dt
Ŝptq “ ´igĤ1,IptqŜptq .

The equation of motion for dressing with Ŝptq from left and Ŝ:ptq from right is

d

dt
Ŝ:ptqÂŜptq “ Ŝ:ptq

”

igĤ1,Iptq, Â
ı

Ŝptq ,

Ŝ:ptqÂŜptq “ Â`

t
ż

0

dτ Ŝ:pτq
”

igĤ1,Ipτq, Â
ı

Ŝpτq . (III.3)
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Analogously to the previous part, we obtain the series expansion by iterating equation
(III.3). To obtain the Heisenberg operator, we replace Â with ÂIptq. Consequently, the
result for the series expansion is

Ŝ:ptqÂIptqŜptq “
8
ÿ

n“0

pigqn
t
ż

0

dt1 . . .

tn´1
ż

0

dtn

”

Ĥ1,Iptnq, . . .
”

Ĥ1,Ipt1q, ÂIptq
ı

. . .
ı

. (III.4)

We have found with equation (III.4) an explicit series expansion in the perturbation
strength g for an arbitrary Heisenberg operator.

Now, we generalize the second-order expansion for the interaction quench73,80,85 to
arbitrary time protocols. We assume that the initial state |Ψ0y is an eigenstate of
Ĥ0psq and observable â. Furthermore, these two operators shall commute for all times,
râ, Ĥ0psqs “ 0. Then, the first-order term vanishes and the second-order term is the first
finite correction,

xâyt “ xây0 ´ g
2

t
ż

0

dt1

t1
ż

0

dt2x
”

Ĥ1,Ipt2q,
”

Ĥ1,Ipt1q, â
ıı

y0 `Opg
3
q . (III.5)

Equation (III.5) is the prethermalization formula for an arbitrary time protocol and
is one of the main results in this dissertation. In sections 3 and 4, we present explicit
results for various nonequilibrium protocols in the Hubbard model. If the Hamiltonian
stays constant after a certain point in time, then the Fourier transformed of the double
commutator is useful. Thus, we define

Jâpεq “ ´

8
ż

´8

dτ

2π
e´iτεxΨ0|

”

V̂ ,
”

eiτĤ0V̂ e´iτĤ0 , â
ıı

|Ψ0y (III.6)

“ 2<
!

xΨ0|

”

V̂ , â
ı

δpĤ0 ´ E0 ´ εqV̂ |Ψ0y

)

“
ÿ

n

|V0n|
2
pan ´ a0q 2δ pEn ´ E0 ´ εq .

We use the abbreviation xΨn|V̂ |Ψmy “ Vnm and the eigenvalues â|Ψny “ an|Ψny and
Ĥ0|Ψny “ En|Ψny. The xΨ0|rV̂ , rV̂Ipτq, âss|Ψ0y is real and symmetric in τ , therefore
Jâpεq is real and symmetric in ε. In subsection 3.b), we compute Jâpεq for the half-filled
Hubbard model with infinite spatial dimensions. We will utilize Jâpεq in subsection c)
and in section 3.
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If an operator Â does not commute with Ĥ0psq, then the first order survives, and
the leading order result is

xÂyt “ xÂptqy0 ` g i

t
ż

0

dt1x
”

Ĥ1,Ipt1q, ÂIptq
ı

y0

looooooooooooooomooooooooooooooon

“∆Ap1q

`Opg2
q . (III.7)

Observables with expectation values as for Â are called first-order observables and for â
are called second-order observables. Examples for second-order observables are kinetic
energy and mode occupation numbers in the Hubbard model. The first-order observable
of interest will be the double occupation. We can also Fourier transform the single
commutator pAnm “ xΨn|Â|Ψmyq,

J̃Âpεq “

8
ż

´8

dτ

2π
e´iτεx

”

eiτĤ0V̂ e´iτĤ0 , Â
ı

y0 (III.8)

“ xΨ0|

´

V̂ δpE0 ´ Ĥ0 ´ εqÂ´ ÂδpĤ0 ´ E0 ´ εqV̂
¯

|Ψ0y

“
ÿ

n

δpEn ´ E0 ´ εqV0nAn0 ´ δpE0 ´ En ´ εqA0nVn0 .

We now exploit this to predict the long-time limit for first-order observables. If there
exists a long-time limit, then it is equal to the long-time average. Our Hamiltonian
shall be constant after time tfin. First, we split the time integral into the two parts of a
time-dependent and a time-independent Hamiltonian,

lim
tÑ8

∆Ap1qptq “ lim
TÑ8

T
ż

tfin

dt

T
∆Ap1qptq

“ lim
TÑ8

T
ż

tfin

dt

T
i
´

t
ż

tfin

dτ `

tfin
ż

0

dτ
¯

x

”

Ĥ1,Ipτq, ÂIptq
ı

y0 .

The time-averaging makes ÂIptq diagonal for 0 ă τ ă tfin, in analogy to the diagonal
ensemble in equation (I.3). The initial state is an eigenstate of xΨn|Âdiag|Ψmy “ δnmAnn
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and thus the expectation value of the single commutator vanishes. Therefore, the
long-time limit is

lim
tÑ8

∆Ap1qptq “

ż

dε J̃Âpεq lim
TÑ8

T
ż

tfin

dt

T
i

t
ż

tfin

dτ eipt´τqε ` i

tfin
ż

0

dτ x
”

Ĥ1,Ipτq, Âdiag,Iptfinq

ı

y0
loooooooooooooomoooooooooooooon

“0

“

ż

dε
J̃Âpεq

´ε
. (III.9)

The long-time limit of the first-order observables depends solely on the initial state
and the final Hamiltonian. Therefore, it is independent of the explicit nonequilibrium
protocol due to equation (III.9). The long-time limit for the second-order observables
will be captured by a generalized Gibbs ensemble, as we show in subsection c).

The series expansion for propagator Ûptq,27 Ŝptq90 and density matrix ρ̂ptq “ Ûptqρ̂Û :ptq91

are derived in several quantum mechanics textbooks,

Ûptq “
8
ÿ

n“0

p´iqn
t
ż

0

dt1 . . .

tn´1
ż

0

dtnĤpt1q, . . . Ĥptnq ,

Ŝptq “
8
ÿ

n“0

p´igqn
t
ż

0

dt1 . . .

tn´1
ż

0

dtnĤ1,Ipt1q . . . Ĥ1,Iptnq ,

ρ̂ptq “
8
ÿ

n“0

p´iqn
t
ż

0

dt1 . . .

tn´1
ż

0

dtn

”

Ĥpt1q, . . .
”

Ĥptnq, ρ̂
ı

. . .
ı

“

8
ÿ

n“0

p´igqn
t
ż

0

dt1 . . .

tn´1
ż

0

dtn

”

Ĥ1,Ipt1q, . . .
”

Ĥ1,Iptnq, ρ̂
ı

. . .
ı

.

We deduced expansions (III.2) and (III.4) because they are used rarely in the literature.92

If we expand expectation values up to a certain order in g, we always obtain the same
terms independent of whether we use the series expansion for propagator, density matrix,
or Heisenberg operator. Secular terms, which grow in time, appear in the perturbative
expansion of Ûptq or Ŝptq, but experience shows that the Heisenberg operator usually
does not contain such terms.93

It is common practice to express the propagators with time-ordering operators. The
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time-ordering operators interchange the positions of the operators Ĥptiq depending on
their time.

Tą : greater time more to the left ñ Ûptq “ Tąe
´i

t
ş

0

dτĤpτq

Tă : lesser time more to the left ñ Û :ptq “ Tăe
i
t
ş

0

dτĤpτq

If we define two appropriate time-ordering operators, then we can reveal that the series
expansions for Ûptq, ρ̂ptq and Û :ptqÂÛptq are congruent to each other. Let us first define

T
pρ̂q
ż

: lesser time closer to ρ̂

T
pÂq
ž

: greater time closer to Â

The following computational steps are then straightforward,

Û :ptqÂÛptq “
8
ÿ

n“0

piqn
t
ż

0

dt1 . . .

tn´1
ż

0

dtn

”

Ĥptnq, . . .
”

Ĥpt1q, Â
ı

. . .
ı

“

8
ÿ

n“0

piqn

n!

t
ż

0

dt1 . . .

t
ż

0

dtn T
pÂq
ž

”

Ĥptnq, . . .
”

Ĥpt1q, Â
ı

. . .
ı

“ T
pÂq
ž

e
i
t
ş

0

dτĤpτq
Âe

´i
t
ş

0

dτĤpτq

“

˜

Tăe
i
t
ş

0

dτĤpτq

¸

Â

˜

Tąe
´i

t
ş

0

dτĤpτq

¸

.

We apply the same procedure to

ρ̂ptq “
8
ÿ

n“0

p´iqn

n!

t
ż

0

dt1 . . .

t
ż

0

dtn T
pρ̂q
ż

”

Ĥpt1q, . . .
”

Ĥptnq, ρ̂
ı

. . .
ı

“ T
pρ̂q
ż

e
´i

t
ş

0

dτĤpτq
ρ̂e

i
t
ş

0

dτĤpτq

“

˜

Tąe
´i

t
ş

0

dτĤpτq

¸

ρ̂

˜

Tăe
i
t
ş

0

dτĤpτq

¸

.

Hence, the series expansion in Ĥpτq for Û :ptqÂÛptq match each other closely. We note
that the steps are identical for the expansion in g if the time-ordering operators act
upon ĤI,1pτq instead of Ĥpτq.
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b) Construction of constants of motion

The prethermalization plateau after a weak interaction quench is described by a general-
ized Gibbs ensemble85 (GGE). Here, we present a straightforward way to construct the
corresponding constants of motion for this GGE. The noninteracting initial Hamiltonian
Ĥ0 shall have constants of motion Îα. They commute with Ĥ0 and can be represented
in the eigenbasis t|Ψnyu of Ĥ0,

”

Îα, Ĥ0

ı

“ 0 ñ Îα “
ÿ

n

|ΨnyIα,nxΨn| .

To generate a constant of motion Ĩα for the fully-interacting Hamiltonian Ĥ “ Ĥ0` gV̂ ,
we replace the eigenstates t|Ψnyu with the eigenstates t|Ψ̃nyu of Ĥ,

Ĩα “
ÿ

n

|Ψ̃nyIα,nxΨ̃n| ñ

”

Ĩα, Ĥ
ı

“ 0 .

The adiabatic transformation is the self-suggesting choice to transform eigenstates of
one Hamiltonian to the eigenstates of another Hamiltonian. Here, we choose it as

R̂ad “ Tą exp
!

´ i

8
ż

0

dτ pĤ0 ` gV̂ e´τδq
)

.

The interaction is changed infinitesimal slowly if we take the limit δ Ñ 0`. The adiabatic
theorem in quantum mechanics86–88 states for admissible Hamiltonians that

R̂ad|Ψ̃ny “ |Ψnye
iφn , |Ψ̃ny “ R̂:ad|Ψnye

iφn .

We assume that the adiabatic theorem is applicable. Thus, the dressed operators are
the desired constants of motion,

Ĩα “ R̂:adÎαR̂ad “
ÿ

n

|Ψ̃nyIα,nxΨ̃n| .

When formula (III.5) is applied, the Ĩα are directly expanded in interaction strength,

R̂:adÎαR̂ad “

8
ÿ

n“0

pigqn
8
ż

0

dτ1 . . .

τn´1
ż

0

dτn

”

V̂Ipτnqe
´δτn , . . .

”

V̂Ipτ1qe
´δτ1 , Îα

ı

. . .
ı

.

The definition is V̂Iptq “ eitĤ0V̂ e´itĤ0 as the initial time of the effective Hamiltonian is
zero. We insert t|Ψnyu, the eigenbasis of Ĥ0, to evaluate the expansion to second order.
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We neglect the terms Opg3q to simplify the equations. The computational steps are
straightforward for the off-diagonal elements,

xΨn|Ĩα|Ψmy
n‰m
“ ig

8
ż

0

dτ xΨn|e
´δτ

”

V̂Ipτq, Îα

ı

|Ψmy

´ g2

8
ż

0

dτ1

τ1
ż

0

dτ2 e´δpτ1`τ2qxΨn|

”

V̂Ipτ2q,
”

V̂Ipτ1q, Îα

ıı

|Ψmy

“ igVnmpIα,m ´ Iα,nq

8
ż

0

dτ ep´δ`ipEn´Emqqτ ´ g2
ÿ

l

VnlVlm

8
ż

0

dτ1

τ1
ż

0

dτ2 e´δpτ1`τ2q

ˆ
`

eiτ2pEn´Elq`iτ1pEl´EmqpIα,m ´ Iα,lq ` eiτ1pEn´Elq`iτ2pEl´EmqpIα,n ´ Iα,lq
˘

“ g
VnmpIα,n ´ Iα,mq

En ´ Em
` g2

ÿ

l‰n

VnlVlmpIα,n ´ Iα,lq

pEn ´ EmqpEn ´ Elq
´ g2

ÿ

l‰m

VnlVlmpIα,l ´ Iα,mq

pEn ´ EmqpEl ´ Emq
,

and the diagonal elements,

xΨn|Ĩα|Ψny “ Iα,n ´ g
2

8
ż

0

dτ1

τ1
ż

0

dτ2 e´δpτ1`τ2qxΨn|

”

V̂Ipτ2q,
”

V̂Ipτ1q, Îα

ıı

|Ψny

“ Iα,n ´ g
2
ÿ

l

VnlVlnpIα,n ´ Iα,lq

8
ż

0

dτ1

τ1
ż

0

dτ2 e´δpτ1`τ2q2 cosppτ1 ´ τ2qpEn ´ Elqq

“ Iα,n ` g
2
ÿ

l‰n

VnlVlnpIα,l ´ Iα,nq

pEl ´ Enq2
.

We assume nondegenerate eigenenergies En and use the abbreviations Iα,n “ xΨn|Îα|Ψny

and Vnm “ xΨn|V̂ |Ψmy. This expansion to second order gives the same operators as
found by Kollar, Wolf and Eckstein.85 We also need R̂adÎαR̂

:

ad in the next subsection
and evaluate it by slowly switching the interaction on,

R̂adÎαR̂
:

ad “

8
ÿ

n“0

pigqn
0
ż

´8

dτ1 . . .

τn´1
ż

´8

dτn

”

V̂Ipτnqe
δτn , . . .

”

V̂Ipτ1qe
δτ1 , Îα

ı

. . .
ı

.
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c) Generalized Gibbs ensemble of the prethermal steady state

We now construct a GGE from our constants of motions and show that it captures the
prethermalization plateau after an arbitrary nonequilibrium protocol. We start from a
noninteracting state. The protocol takes place from initial time tini to final time tfin and
the Hamiltonian is constant afterwards,

Ĥ0ptq “
ÿ

α

εαptqÎα , εαptq “

$

&

%

εα for t ă tini

εα ` δεαptq for tini ď t ď tfin

εα for tfin ă t
,

Ĥ1ptq “

$

&

%

0 for t ă tini

Ĥ1ptq for tini ď t ď tfin

V̂ for tfin ă t

.

We assume that rÎα, Îβs “ 0 and therefore rĨα, Ĩβs “ 0. The statistical ensemble of the
GGE10–13 is defined as

ρ̃G “

ś

α

e´λαĨα

Tr
!

ś

β

e´λβ Ĩβ
) . (III.10)

The constants λα are fixed by the conditions,

TrtĨαρ̃Gu “ xĨαytfin
.

We have defined the GGE and show in the rest of this subsection that this GGE governs
the prethermal plateau. This means that the long-time limit of xÎαyt is equal to the
GGE prediction in second order,

lim
tÑ8

xÎαyt “ TrtÎαρ̃Gu `Opg
3
q . (III.11)

The noninteracting Hamiltonian has the same set of eigenstates for all times. Therefore,
the time-ordering operator in Û0ptq can be omitted,

Û0ptq “ Tą exp
!

´ i

t
ż

tini

dτ Ĥ0pτq
)

“ exp
!

´ i

t
ż

tini

dτ Ĥ0pτq
)

.
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The initial state shall be an eigenstate of Ĥ0ptq, so the prethermalization equation (III.5)
is applicable. The Hamiltonian becomes time-independent after tfin, and we shift the
interaction dressing to time tfin, so Ĥ1,Iptq has an advantageous form afterwards,

Ĥ1,Iptq “

$

&

%

0 for t ă tini

Ĥ1,Iptq “ Û0ptfinqÛ
:

0ptqĤ1ptqÛ0ptqÛ
:

0ptfinq for tini ď t ď tfin

V̂Iptq “ eiĤ0pt´tfinqV̂ e´iĤ0pt´tfinq for tfin ă t

.

This shift does not affect the initial state, as it is an eigenstate of Ĥ0ptq, or the observ-
ables Îα, as they commute with Ĥ0ptq.

If the long-time limit exists, then it is equal to the long-time average. We apply
the prethermalization equation (III.5) and the long-time average splits into three terms
for second order,

xÎαy “ lim
TÑ8

T
ż

tfin

dt

T
xÎαyt

“ xÎαytini
` g2

p∆α,1 `∆α,2 `∆α,3q `Opg
3
q , (III.12)

∆α,1 “ ´ lim
TÑ8

T
ż

tfin

dt

T

t
ż

tfin

dτ1

τ1
ż

tfin

dτ2 x

”

V̂Ipτ2q,
”

V̂Ipτ1q, Îα

ıı

ytini
,

∆α,2 “ ´ lim
TÑ8

T
ż

tfin

dt

T

t
ż

tfin

dτ1

tfin
ż

tini

dτ2 x

”

Ĥ1,Ipτ2q,
”

V̂Ipτ1q, Îα

ıı

ytini
,

∆α,3 “ ´

tfin
ż

tini

dτ1

τ1
ż

tini

dτ2 x

”

Ĥ1,Ipτ2q,
”

Ĥ1,Ipτ1q, Îα

ıı

ytini
.

The ∆α,1 corresponds to the quench, which will be discussed in section 3, and results in

∆α,1 “

ż

dε JIαpεq lim
TÑ8

T
ż

tfin

dt

T

t
ż

tfin

dτ1

τ1
ż

tfin

dτ2 cospεpτ1 ´ τ2qq “

ż

dε
JIαpεq

ε2
.

This term and can be expressed as an integral over JIαpεq because the Hamiltonian is
constant. ∆α,2 in equation (III.12) is a mixture of nonequilibrium protocol and the
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long-time evolution. ∆α,3 describes the nonequilibrium protocol from tini to tfin.

Next, we compute the GGE prediction. We assume that the expectation values with
respect to the initial state are equal to that of a statistical ensemble ρ̂ini. Therefore, the
zeroth order of the GGE is equal to ρ̂ini,

xÔytini
“ TrtÔρ̂iniu and ρ̃G “ ρ̂ini `Opgq . (III.13)

Both assumptions are valid if we compute the expectation values by Wick’s theorem.
We further use the transformed ensemble ρ̂G, which we relate with our assumption
(III.13) to the initial ensemble ρ̂ini,

ρ̂G “ R̂adρ̃GR̂
:

ad “

ś

α

e´λαĨα

Tr
!

ś

β

e´λβ Îβ
) “ ρ̂ini `Opgq .

The statistical prediction of the GGE is

TrtÎαρ̃Gu “ TrtR̂adÎαR̂
:

adρ̂Gu

“ TrtÎαρ̂Gu ` Trt
´

R̂adÎαR̂
:

ad ´ Îα

¯

ρ̂Gu .

The first term becomes

TrtÎαρ̂Gu “ TrtĨαρ̃Gu “ xĨαytfin
.

The zeroth order vanishes trivially in the second term TrtpR̂adÎαR̂
:

ad ´ Îαqρ̂Gu. ρ̂G is

diagonal in the eigenbasis of Îα and the first-order correction is computed by a single
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commutator. Thus, the first order in g vanishes as well. Consequently replacing ρ̂G with
ρ̂ini gives an error of Opg3q,

Trt
´

R̂adÎαR̂
:

ad ´ Îα

¯

ρ̂Gu

“

8
ÿ

n“1

p´igqn
8
ż

tfin

dτ1 . . .

τn´1
ż

tfin

dτn Trt
”

V̂Ipτnqe
δτn , . . .

”

V̂Ipτ1qe
δτ1 , Îα

ı

. . .
ı

ρ̂Gu

“

8
ÿ

n“2

p´igqn
8
ż

tfin

dτ1 . . .

τn´1
ż

tfin

dτn Trt
”

V̂Ipτnqe
δτn , . . .

”

V̂Ipτ1qe
δτ1 , Îα

ı

. . .
ı

ρ̂Gu

“ p´igq2
8
ż

tfin

dτ1

τ1
ż

tfin

dτ2 Trt
”

V̂Ipτ2qe
δτ2 ,

”

V̂Ipτ1qe
δτ1 , Îα

ıı

ρ̂iniu `Opg
3
q

“ Trt
´

R̂adÎαR̂
:

ad ´ Îα

¯

ρ̂iniu `Opg
3
q .

The GGE prediction up to second order is equal to

TrtÎαρ̃Gu “ xĨαytfin
` x

´

R̂adÎαR̂
:

ad ´ Îα

¯

ytini
`Opg3

q .

We have an explicit expansion in interaction strength g for the two terms on the
right-hand side. The expectation value of the constants of motions at tfin has three
second-order terms,

xĨαytfin
“ xÛ :ptfinqR̂

:

adÎαR̂adÛptfinqytini

“ xÎαytini
` g2

´

∆̃α,1 ` ∆̃α,2 ` ∆̃α,3

¯

`Opg3
q , (III.14)

∆̃α,1 “ ´

8
ż

tfin

dτ1

τ1
ż

tfin

dτ2 x

”

V̂Ipτ2qe
´δτ2 ,

”

V̂Ipτ1qe
´δτ1 , Îα

ıı

ytini
,

∆̃α,2 “ ´

8
ż

tfin

dτ1

tfin
ż

tini

dτ2 x

”

Ĥ1,Ipτ2q,
”

V̂Ipτ1qe
´δτ1 , Îα

ıı

ytini ,

∆̃α,3 “ ´

tfin
ż

tini

dτ1

τ1
ż

tini

dτ2 x

”

Ĥ1,Ipτ2q,
”

Ĥ1,Ipτ1q, Îα

ıı

ytini
.
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The last term of equation (III.14) is equal to the last term from the long-time average
in equation (III.12), ∆̃α,3 “ ∆α,3. We obtain ∆̃α,2 “ ∆α,2 after explicit integration over

τ1 and insertion of the eigenbasis of Ĥ0,

lim
TÑ8

T
ż

tfin

dt

T

t
ż

tfin

dτ1

”

V̂Ipτ1q, Îα

ı

“
ÿ

n,m

|ΨnyVnm pIα,n ´ Iα,mq xΨm|

i pEn ´ Emq

“

8
ż

tfin

dτ1

”

V̂Ipτ1qe
´δτ1 , Îα

ı

.

The term ∆̃α,1 of equation (III.14) is half the value of ∆α,1,

∆̃α,1 “

ż

dε JIαpεq

8
ż

tfin

dτ1

τ1
ż

tfin

dτ2 e´δτ2e´δτ1 cospεpτ1 ´ τ2qq “

ż

dε
JIαpεq

2ε2
.

The remaining term is equal to half the value of ∆α,1 as well,

x

´

R̂adÎαR̂
:

ad ´ Îα

¯

ytini
“ p´igq2

tfin
ż

´8

dτ1

τ1
ż

´8

dτ2 eδτ1eδτ2xrV̂Ipτ2q, rV̂Ipτ1q, Îαssytini
`Opg3

q

“ g2

ż

dε JIαpεq

tfin
ż

´8

dτ1

τ1
ż

´8

dτ2 eδτ2eδτ1 cospεpτ1 ´ τ2qq `Opg
3
q

“ g2

ż

dε
JIαpεq

2ε2
`Opg3

q .

Consequently, the sum of all second-order terms is equal on both sides of equation
(III.11),

xÎαy “ xĨαytfin
` x

´

R̂adÎαR̂
:

ad ´ Îα

¯

ytini
`Opg3

q

“ TrtÎαρ̃Gu `Opg
3
q .

In summary, we have proven equation (III.11). We achieved this by evaluating all
terms to second-order that arise from the series expansion. We handled the adiabatic
transformation as the time-evolution with an appropriate time-dependent Hamiltonian.
Hence, we have generalized the GGE prediction from the quench85 to arbitrary protocols.
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Our derivation even includes weakly interacting initial states generated by adiabatic
switching from the noninteracting states. We will further explain this in subsection 3.a).
While several steps in our derivation are inspired by reference,85 the formal construc-
tion of constants of motion is more general and can be computed to arbitrary orders.
One open question is whether the long-time limit is equal to the GGE in Opg3q or higher.

The central message from this subsection is that the prethermal plateau of first-order and
second-order are fundamentally different. For first-order observables, the plateau value
depends solely on the final Hamiltonian as we learned in equation (III.9). Thus, there is
no memory of the nonequilibrium protocol. Contrarily, for second-order observables,
the GGE and plateau values are sensitive to the specific protocol. In subsection 3.e),
we will compute interaction ramps and the plateau values are fine-tuned by the ramp
duration. In section 4, the initial and final Hamiltonian are identical, nevertheless,
the hopping-amplitude drive generates prethermal steady values in the occupation
probabilities.
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3 Interaction quenches, ramps and periodic drives

In this section, we will develop and apply a method to compute the prethermal regime for
weak time-dependent interactions. In particular, we investigate quenches,73,80 ramps,84

and periodic drives89 for the Hubbard model with infinite spatial dimensions. First,
we define an effective Hamiltonian and evaluate the general terms in subsection a).
Next, we compute the necessary expressions for the Hubbard model b), which become
feasible in infinite dimensions. In subsection c), we discuss crossing points in transients
of first-order observables. After that, we study the relaxation behavior to the prethermal
plateau in subsection d). In subsection e), we explore the influence of ramping duration
and ramping smoothness on the prethermal plateau. In the last subsection f), we analyze
periodic interaction drives, which exhibit two qualitatively different regimes.89

a) Effective model and general method

First, we define an effective Hamiltonian, which enables us to start from an uncorrelated
initial state. For this effective Hamiltonian, we evaluate equations (III.5) and (III.7)
for general models with help of the Fourier transformed from equations (III.6) and
(III.8). We treat the first- and second-order observables independently and will obtain
the expressions from equations (III.15) and (III.16), which will be the main results of
this subsection.

The noninteracting Hamiltonian Ĥ0 shall be time-independent, and the interaction
has a time-dependent factor. In section 4, the noninteracting Hamiltonian will become
time-dependent as well. We can write the ramp Hamiltonian as

Ĥptq “ Ĥ0 ` V̂

"

g0 t ď 0
g0 `∆gfptq t ą 0

.

Our initial state |Ψy is an eigenstate of the Hamiltonian at t ď 0. We assume that
the initial interacting state |Ψy can be generated from a noninteracting state |Ψ0y by
adiabatic switching,86–88 where |Ψ0y is the corresponding eigenstate of Ĥ0. We thus
replace our original problem of an interacting state with an auxiliary problem. In the
auxiliary problem, we start from the noninteracting state |Ψ0y ramp adiabatically and
then apply the nonequilibrium protocol. The auxiliary Hamiltonian is

Ĥeffptq “ Ĥ0 ` V̂ gptq with gptq “

"

g0etδ t ď 0
g0 `∆gfptq t ą 0

We have to take the limit δ Ñ 0` for adiabatic switching. Now, we can apply the
perturbative expansion for first- and second-order observables. We compute two limits
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that of initial time to minus infinity, and that of δ Ñ 0` and will perform them
analytically. The general procedure is to first analytically evaluate all terms without
ramping function fptq. Then, we will combine the terms for negative and positive times
to a single expression and avoid the numerical computation of both limits.

First-order observables

We enter the auxiliary Hamiltonian into equation (III.7) and replace the expectation
value of the commutator with its Fourier transformed,

xÂyt “ xÂy0 ` i

t
ż

´8

dτ gpτqx
”

V̂Ipτq, ÂIptq
ı

y0 `Opg
2
q

“ xÂy0 `

ż

dε J̃Âpεq

t
ż

´8

dτ gpτqeipt´τqε

looooooooomooooooooon

“gϕp1qpt,εq

`Opg2
q .

The Fourier transformed J̃Âpεq was defined in equation (III.8). Next, we compute the
time integration by splitting the time integration into positive and negative times,

gϕp1qpt, εq “

t
ż

´8

dτ gpτqeipt´τqε

“

0
ż

´8

dτ g0eδτeipt´τqε `

t
ż

0

dτ pg0 `∆gfpτqqeipt´τqε

“ g0
i

ε
`∆g

t
ż

0

dτ fpτqeipt´τqε .
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When we combine the term from the adiabatic ramp with the g0-term for positive
times, we obtain a time-independent term, which is equal to the value at the end of the
adiabatic ramp. The result is

xÂyt “ xÂy0 ` g0∆A
p1q
ad `∆g∆Ap1qrampptq `Opg

2
q (III.15)

∆A
p1q
ad “ i

0
ż

´8

dτeτδx
”

V̂Ipτq, Â
ı

y0 “

ż

dε
J̃Âpεq

´ε

∆Ap1qrampptq “ i

t
ż

0

dτ fpτqx
”

V̂Ipτq, ÂIptq
ı

y0 “

ż

dε J̃Âpεqi

t
ż

0

dτ fpτqeipt´τqε .

We note that expectation values for the first-order observables are computed perturba-
tively as the adiabatic value plus the ramp of ∆gfptq.

Second-order observables

The first-order term vanishes for the second-order observables â. Therefore, we apply
equation (III.5) with the Fourier transformed Jâpεq from equation (III.6). The result is

xâyt “ xây0 ´

t
ż

´8

dτ1

τ1
ż

´8

dτ2 gpτ1qgpτ2qx

”

V̂Ipτ2q,
”

V̂Ipτ1q, âIptq
ıı

y0 `Opg
3
q

“ xây0 `

ż

dεJâpεq

t
ż

´8

dτ1

τ1
ż

´8

dτ2 gpτ1qgpτ2q cospεpτ1 ´ τ2qq

loooooooooooooooooooooooomoooooooooooooooooooooooon

“g2ϕp2qpt,εq

`Opg3
q ,

g2ϕp2qpt, εq “

0
ż

´8

dτ1

τ1
ż

´8

dτ2 g0eδτ1g0eδτ2 cos ppτ1 ´ τ2qεq

`

t
ż

0

dτ1pg0 `∆gfpτ1qq

0
ż

´8

dτ2 g0eδτ2 cos ppτ1 ´ τ2qεq

`

t
ż

0

dτ1pg0 `∆gfpτ1qq

τ1
ż

0

dτ2 pg0 `∆gfpτ2qq cos ppτ1 ´ τ2qεq .

82
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Next, we use the identity,

0 “

0
ż

´8

dτ2 eδτ2 cos ppτ1 ´ τ2qεq `

τ1
ż

0

dτ2 cos ppτ1 ´ τ2qεq ,

allowing us to simplify,

g2ϕp2qpt, εq “
g2

0

2ε2
`

t
ż

0

dτ1pg0 `∆gfpτ1qq

τ1
ż

0

dτ2 ∆gfpτ2q cos ppτ1 ´ τ2qεq .

The final result has three second-order terms,

xâyt “ xây0 ` g
2
0∆a

p2q
ad ` g0∆g∆a

p2q
mixptq `∆g2∆ap2qrampptq `Opg

3
q , (III.16)

∆a
p2q
ad “ ´

0
ż

´8

dτ1

τ1
ż

´8

dτ2 eδτ1eδτ2x
”

V̂Ipτ2q,
”

V̂Ipτ1q, â
ıı

y0 “

ż

dε
Jâpεq

2ε2
,

∆a
p2q
mixptq “ ´

t
ż

0

dτ1

τ1
ż

0

dτ2 fpτ2qx

”

V̂Ipτ2q,
”

V̂Ipτ1q, â
ıı

y0

“

ż

dε Jâpεq

t
ż

0

dτ1

τ1
ż

0

dτ2 fpτ2q cospεpτ1 ´ τ2qq ,

∆ap2qrampptq “ ´

t
ż

0

dτ1fpτ1q

τ1
ż

0

dτ2 fpτ2qx

”

V̂Ipτ2q,
”

V̂Ipτ1q, â
ıı

y0

“

ż

dε Jâpεq

t
ż

0

dτ1

τ1
ż

0

dτ2 fpτ1qfpτ2q cospεpτ1 ´ τ2qq .

The first term corresponds to the adiabatic correction. The third corresponds to the
ramp from g “ 0 to g “ ∆g, and the second is a new mixing term. The ramp and the
mixing term are related to one another by

fptq
B∆a

p2q
mixptq

Bt
“
B∆a

p2q
rampptq

Bt
.

For the first-order observables, we have a simple linear combination of adiabatic and
nonequilibrium terms. Thus, they do not affect each other. For second-order observables
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however, the mixing term emerges, initially interacting and noninteracting states have a
qualitatively different dynamics. The physical interpretation is that the second-order
observables are more sensitive to the history of the nonequilibrium process than the
first-order observables. Finally, we note that the adiabatic corrections A

p1q
ad and ∆a

p2q
ad

are equal to corresponding terms from the time-independent Rayleigh-Schrödinger
perturbation theory,94–96

|ΨRSy “ |Ψ0y ` g0

ÿ

n‰0

|ΨnyVn0

En ´ E0

`Opg2
0q ,

g0A
p1q
ad “ xΨRS|Â|ΨRSy ´ xΨ0|Â|Ψ0y `Opg

2
0q ,

g2
0a
p2q
ad “ xΨRS|â|ΨRSy ´ xΨ0|â|Ψ0y `Opg

3
0q .

b) Hubbard model in infinite spatial dimensions

We compute the commutator expectation values for the Hubbard model in this subsection.
We begin with the evaluation of an expectation value of two two-body interaction
operators,

x

”

V̂ p1q, V̂ p2q
ı

y0 with V̂ piq “
ÿ

α,β,γ,δ

V
piq
αβγδ ĉ

:
αĉ
:

β ĉγ ĉδ .

The state is uncorrelated with xĉ:αĉβy0 “ δαβxn̂αy0. According to Wick’s theorem,26,27,90

all possible two-particle contractions contribute. We assume a state with a fixed particle
number. Hence, contractions of two annihilation or two creation operators vanish. We
assume next that if two indices of V

piq
αβγδ are identical, then it vanishes or the other two

indices are identical as well. The physical interpretation of this assumption is that if
one particle is not scattered, the other one is not scattered as well. Thus assumption is
fullfilled e.g. for a translationally invariant interaction term.45 When two c-operators
from the same interaction term are contracted together, then the initial state is an
eigenstate of the remainder of this interaction. Due to the commutator, we then obtain
zero. Thus, the terms containing contraction of two c-operators from the same interaction
are not contributing. Under these assumptions, the term simplifies to

V
p1q
αβγδV

p2q
α1β1γ1δ1x

”

ĉ:αĉ
:

β ĉγ ĉδ, ĉ
:

α1 ĉ
:

β1 ĉγ1 ĉδ1
ı

y0

“ V
p1q
αβγδV

p2q
α1β1γ1δ1

´

xĉ:αĉ
:

β ĉγ1 ĉδ1y0xĉγ ĉδ ĉ
:

α1 ĉ
:

β1y0 ´ xĉ
:

α1 ĉ
:

β1 ĉγ ĉδy0xĉγ1 ĉδ1 ĉ
:
αĉ
:

βy0

¯

.
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The expectation value is

x

”

V̂ p1q, V̂ p2q
ı

y0 “
ÿ

α,β,γ,δ,
α1,β1,γ1,δ1

V
p1q
αβγδV

p2q
α1β1γ1δ1 pδαδ1δβγ1 ´ δαγ1δβδ1q pδγβ1δδα1 ´ δγα1δδβ1q

ˆ

´

xn̂αy0xn̂βy0p1´ xn̂γy0qp1´ xn̂δy0q

´ xn̂γy0xn̂δy0p1´ xn̂αy0qp1´ xn̂βy0q
¯

“
ÿ

α,β,γδ

V
p1q
αβγδ

´

V
p2q
δγβα ´ V

p2q
γδβα ´ V

p2q
δγαβ ` V

p2q
γδαβ

¯

ˆ

´

xn̂αy0xn̂βy0p1´ xn̂γy0qp1´ xn̂δy0q

´ xn̂γy0xn̂δy0p1´ xn̂αy0qp1´ xn̂βy0q
¯

.

The sign changes when we commute the two creation operators or the two annihilation
operators of one interaction. Thus, the coefficients V

piq
αβγδ have to respect the symmetry

V
piq
αβγδ “ ´V

piq
βαγδ “ ´V

piq
αβδγ “ V

piq
βαδγ .

This further simplifies our expectation value to

x

”

V̂ p1q, V̂ p2q
ı

y0 “ 4
ÿ

α,β,γ,δ

V
p1q
αβγδV

p2q
δγβα

´

xn̂αy0xn̂βy0p1´ xn̂γy0qp1´ xn̂δy0q

´ xn̂γy0xn̂δy0p1´ xn̂αy0qp1´ xn̂βy0q
¯

.

In the subsection 6.a), we explicitly consider the interactions

V̂ p1q Ñ V̂ and V̂ p2q Ñ
”

eitĤ0V̂ e´itĤ0 , n̂ν

ı

with Ĥ0 “
ÿ

α

εαn̂α and V̂ “ V̂ : .

This leads to

V
p1q
αβγδ Ñ Vαβγδ , V

p2q
αβγδ Ñ Vαβγδe

itpεα`εβ´εγ´εδq pδνδ ` δνγ ´ δνβ ´ δναq

and results in

x

”

V̂ ,
”

eitĤ0V̂ e´itĤ0 , n̂ν

ıı

y0

“ 4
ÿ

α,β,γ,δ

|Vαβγδ|
2 eitpεα`εβ´εγ´εδq pδνδ ` δνγ ´ δνβ ´ δναq

ˆ

´

xn̂αy0xn̂βy0p1´ xn̂γy0qp1´ xn̂δy0q ´ xn̂γy0xn̂δy0p1´ xn̂αy0qp1´ xn̂βy0q
¯

“ 16
ÿ

β,γ,δ

|Vνβγδ|
2 cosptpεν ` εβ ´ εγ ´ εδqq

´

xn̂νy0xn̂βy0p1´ xn̂γy0qp1´ xn̂δy0q

´ xn̂γy0xn̂δy0p1´ xn̂νy0qp1´ xn̂βy0q
¯

.
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In section 3, we focus on the Hubbard model, and the interaction is the double occupation

ν Ñ σk ùñ Vνβγδ Ñ
∆k`k1`k2`k3

4L2
δσσ3δσ1σ2p1´ δσσ1q .

Therefore, the expectation value is

x

”

D̂,
”

eitĤ0D̂e´itĤ0 , n̂σk

ıı

y0

“ 2
ÿ

k1,k2,k3

∆k`k1`k2`k3

L2
cosptpεk ` εk1 ´ εk2 ´ εk3qq

ˆ

´

xn̂σky0xn̂σk1y0p1´ xn̂σk2y0qp1´ xn̂σk3y0q

´ xn̂σk2y0xn̂σk3y0p1´ xn̂σky0qp1´ xn̂σk1y0q

¯

“ 2<
ÿ

i

F`σ pRi, tqF
´
σ pRi, tq

´

f`σkpRi, tqF
´
σ pRi, tq ´ f

´
σkpRi, tqF

`
σ pRi, tq

¯

.

We use the abbreviations

f`σkpRi, tq “ e´ipRi¨k`tεkqxn̂σky0 ,

f´σkpRi, tq “ eipRi¨k`tεkqp1´ xn̂σky0q ,

F˘σ pRi, tq “
1

L

ÿ

k

f˘σkpRi, tq .

The expressions for the kinetic energy and double occupation, we deduce as

x

”

D̂,
”

D̂Iptq, Ĥ0

ıı

y0 “
ÿ

σk

εkx
”

D̂,
”

D̂Iptq, n̂σk

ıı

y0

“ 2<
ÿ

iσ

F`σ pRi, tqF
´
σ pRi, tq

´

F´σ pRi, tqi
B

Bt
F`σ pRi, tq

´ F`σ pRi, tqp´iq
B

Bt
F´σ pRi, tq

¯

“ 2<
ÿ

i

i
B

Bt
F`σ pRi, tqF

´
σ pRi, tqF

´
σ pRi, tqF

`
σ pRi, tq ,

ix
”

D̂, D̂Iptq
ı

y0 “

t
ż

0

dτ x
”

D̂,
”

D̂Ipτq, Ĥ0

ıı

y0

“ 2<
ÿ

i

iF`σ pRi, tqF
´
σ pRi, tqF

´
σ pRi, tqF

`
σ pRi, tq .
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The numerical summation over all lattice sites i is challenging. This issue simplifies in
the limit of infinite spatial dimensions.57 The lattice sum of the functions F˘σ pRi, tq is
bounded by

ÿ

i

ˇ

ˇF˘σ pRi, tq
ˇ

ˇ

2
“ F˘σ p0, 0q ď 1 .

The function F˘σ pRi, tq has the same value for each lattice point in the same symmetry
group. Hence, its absolute value is bounded by the number of lattice points zi in the
symmetry group of Ri,

ˇ

ˇF˘σ pRi, tq
ˇ

ˇ ď
1
?
zi
.

Only Ri “ 0 has a finite contribution in the limit of infinite spatial dimensions,57 as zi
goes to infinity for infinite dimension and all other symmetry groups. We consider a
paramagnetic state F˘σ pRi, tq “ F˘σ pRi, tq with a symmetric density of states (d.o.s.)
ρpεq “ ρp´εq at half filling εF “ 0,

F˘σ pRi, tq Ñ δ0,Ri
F ptq with F ptq “

0
ż

´W {2

dε ρpεqe´itε .

In particular, we investigate the constant, the semielliptic, and the Gaussian d.o.s. . The
corresponding functions F ptq are found in table 3. For our main quantities discontinuity

d.o.s. constant semielliptic Gaussian

ρpεq Θp1´ε2q
2

2
π
Θp1´ ε2q

?
1´ ε2 e´ε

2

?
π

F ptq
sinptq ` ipcosptq ´ 1q

t

J1ptq ´ iH1ptq

t

e´t
2{4

2
´ i?

π
D`pt{2q

Table 3: Functions F ptq from different densities of states

at the Fermi surface, kinetic energy, and double occupation, we use the abbreviations

∆nptq “ 1` U2∆np2qptq `OpU3
q ,

xĤ0yt “ E0 ` U
2E

p2q
kinptq `OpU

3
q ,

xD̂yt “
1

4
` U∆Dp1qptq `OpU2

q .
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Evaluation of Jâpεq and J̃D̂pεq

We compute now the functions Jâpεq for the half-filled Hubbard model in infinite spatial
dimensions. They are symmetric, Jâpεq “ Jâp´εq, and have the form

Jn̂σkpεq “ Jεkpεq
εką0
“

8
ż

´8

dt

2π
e´itε2<

 

eitεkF ptq3
( εą0
“

"

α3pε´ εkq for ε ą εk
0 for ε ă εk

,

JĤ0
pεq “ ´

8
ż

´8

dt

2π
e´itε2<

"

i
B

Bt
F ptq4

*

“ |ε|α4p|ε|q , J̃D̂pεq “ sgnpεqα4p|ε|q ,

αnpεq “

W {2
ż

0

dε1 . . .

W {2
ż

0

dεnρpε1q . . . ρpεnqδpε1 ` . . .` εn ´ εq “

8
ż

´8

dt

2π
e´itεF ptqn .

The remaining functions α3pεq and α4pεq are piecewise analytic in intervals of the half
bandwidth W

2
,

αnpεq “

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

0 for ε ă 0
αn,1pεq for 0 ă ε ă W

2

αn,2pεq for W
2
ă ε ă W

...
...

αn,npεq for W pn´1q
2

ă ε ă Wn
2

0 for Wn
2
ă ε

.

We compute them recursively as

αn`1,mpεq “

ε´m´1
2
W

ż

0

dε1 ρpε1qαn,mpε´ ε1q `

W {2
ż

ε´m´1
2
W

dε1 ρpε1qαn,m´1pε´ ε1q ,

α1,1pεq “ ρpεq , αn,0pεq “ αn,n`1pεq “ 0 .

If the d.o.s. is a poly in ε, then the analytic evaluation of α3pεq and α4pεq is straight-
forward. The real-time dynamics can be computed analytically as long as the ramping
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functions are not too complicated. Examples for fptq are given in subsection e). We
obtain for the constant density of states (d.o.s.) with ρpεq “ 1{2 and W “ 2,

α3,1pεq “
ε2

16
,

α3,2pεq “ ´
ε2

8
`

3ε

8
´

3

16
,

α3,3pεq “
ε2

16
´

3ε

8
`

9

16
,

α4,1pεq “
ε3

96
,

α4,2pεq “ ´
ε3

32
`
ε2

8
´
ε

8
`

1

24
,

α4,3pεq “
ε3

32
´
ε2

4
`

5ε

8
´

11

24
,

α4,4pεq “ ´
ε3

96
`
ε2

8
´
ε

2
`

2

3
.

We perform the integrations numerically for more complicated cases, e.g., semielliptic,
Gaussian or next-neighbor hopping on the square lattice. We display the results of α3pεq

1 2 3 4
ϵ

0.02

0.04

0.06

0.08

0.10

α3(ϵ)

const

semiell .

square

Gauss

1 2 3 4 5
ϵ

0.01

0.02

0.03

0.04

α4(ϵ)

const

semiell .

square

Gauss

Figure 26: α3pεq and α4pεq for various d.o.s.

and α4pεq for these d.o.s. and a bandwidth of W “ 2 in figure 26. In all cases, the
functions are qualitatively similar. They rise from zero up to a maximum and decrease
after that. For a finite bandwidth, these functions vanish as expected at ε “ 3 or ε “ 4.
by contrast, they are finite for the Gaussian d.o.s. for all finite ε. The functions α3pεq and
α4pεq for the constant d.o.s. are symmetric, while otherwise the peak is shifted to the left.
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Next, we analyze the small-ε behavior as it determines the convergence of the equilibrium
correction

ş

dε Jâpεq
2ε2

. If ρp0q is finite, we obtain

αnpεq “
εn´1

pn´ 1q!
ρp0qn `Opεnq .

The square lattice d.o.s. has a logarithmic divergence around ε “ 0 and therefore the
functions grow faster for small ε,

ρpεq “ c logpεq `Op1q ñ αnpεq “
εn´1cn

pn´ 1q!
logpεqn `Opεn´1 logpεqn´1

q .

The small ε contribution to the integral
ş

dε Jâpεq
2ε2

is finite in both cases. Finally, we
analyze the Gaussian d.o.s. , for which we use an special integration technique as
discussed next.

Integration technique for the Gaussian d.o.s.

We compute the functions αnpεq for the Gaussian d.o.s. as

αnpεq “

8
ż

´8

dt

2π
e´itε

8
ż

0

dε1 . . .

8
ż

0

dεn
e
řn
l“1 itεl´ε

2
l

?
π
n

“
εn´1

?
π
n

8
ż

0

dx1 . . .

8
ż

0

dxn e
´ε2

n
ř

l“0
x2
l
δp1´

n
ÿ

l“0

xlq

“

1
ż

1{n

db anpbq
εn´1e´bε

2

?
πn

.

The functions anpbq are strictly positive and have the definition

anpbq “

8
ż

0

dx1 . . .

8
ż

0

dxn δp1´
n
ÿ

i“1

xiqδpb´
n
ÿ

j“1

x2
jq . (III.17)
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The functions a3pbq and a4pbq are evaluated analytically in appendix 1. Due to the
geometry of the higher-dimensional sphere, the functions anpbq are non-zero only in the
interval p 1

n
, 1q. We compute the real-time functions by Fourier transformation

F ptqn “

8
ż

´8

dε eitεαnpεq “

1
ż

1{n

db
anpbq
?
πn

8
ż

´8

dε eitεαnpεqε
n´1e´bε

2

“

1
ż

1{n

db
anpbq
?
bπn´1

ˆ

´i
B

Bt

˙n´1

e´
t2

4b .

This technique enables us to analytically compute the time integrations in some cases.
An example will be given in subsection d).

Now, we have access to all the Jâpεq and J̃Âpεq for our numerical evaluation. In
the next subsections c) to f), we will compute the transients for the expectation values
of double occupation, kinetic energy and mode occupation numbers. The procedure
works as following: We insert Jâpεq and J̃Âpεq from this subsection into equation (III.15)
or (III.16) and perform the integration over ε analytically or numerically.

c) Nonequilibrium crossing points

We compute the dynamics of a time-dependent first-order observable. We start from
initial states of varying interaction strength g0 and ramp to a fixed final interaction
strength g1. We compare the dynamic with respect to the various initial states. Equation
(III.15) predicts for interaction ramps and in particular quenches that the time-dependent
expectation value is computed as the adiabatic term plus the dynamical term with
respect to the noninteracting state,

xÂyt “ xÂy0 ` g0∆A
p1q
ad ` pg1 ´ g0q∆A

p1q
rampptq `Opg

2
q .

We assume the existence of times t˚ at which

∆A
p1q
ad “ ∆Ap1qramppt

˚
q . (III.18)

Then equation (III.15) is independent of g0

xÂyt˚ “ xÂy0 ` g1∆A
p1q
ad `Opg

2
q .

Therefore, any two lines of xÂyt with identical g1 and different g0 cross at time t˚ and
we call it nonequilibrium crossing point. We emphasize that t˚ strongly depends on
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the chosen observable Â, ramp function fptq and the model under investigation. No
finite time t˚ may exist or several such times. One particular solution for t˚ is the
long-time limit because of equation (III.9). Hence, the crossing point has the value of
the prethermalization plateau. If perturbation theory is applicable, then crossing points
are predicted for every quench or ramp with fixed final interaction strength. Thus,
crossing points are a very general nonequilibrium phenomenon.

We were informed by F. Maislinger and H. G. Evertz that they had observed an crossing
point in the double occupation for different Hubbard interaction quenches in infinite
dimensions.97 In their nonequilibrium DMFT calculations, the lines of xD̂yt cross at
time t « 0.5 for fixed U1 and variable U0 and a semielliptical d.o.s. with bandwidth 4.
We now show that our perturbative method explains the origin of this crossing point
and compare the nonequilibrium DMFT data of the reference97 with our method. First,
we apply the first-order formula (III.15) to the quench with fpt ą 0q “ 1. Second, we
insert the half-filled Hubbard model in infinite spatial dimensions and evaluate the
perturbative expression,

xD̂yt “
1

4
` U0∆D

p1q
ad ` pU1 ´ U0q∆D

p1q
qu ptq `OpU

2
q , (III.19)

∆Dp1qqu ptq “

t
ż

0

dτ 2<
 

iF pτq4
(

, ∆D
p1q
ad “ ∆Dp1qqu p8q ,

with F ptq given in table 3. Examples are depicted in figure 27 for various d.o.s. with
bandwidth W “ 4. In all cases, we observe at least one crossing point at a finite time
t˚, and the values are listed in table 4. Moreover, we obtain similar values for t˚1 and
∆Dp1qp8q for all tested d.o.s. , thus this point is an almost universal feature comparable
to the high-temperate crossing point of the specific heat in the Hubbard model.98

d.o.s. constant semielliptic Gaussian square lattice
t˚1 0.438075 0.526404 0.59826 0.589538
t˚2 1.32381 1.64790

∆D
p1q
qu p8q -0.034831 -0.0417323 -0.0466286 -0.0463528

Table 4: Perturbative crossing-point values for the double occupation

The plot in the right upper corner of figure 27 corresponds to the DMFT calculations.
Our results describe one crossing point at t˚ « 0.53 and a second one at t˚ « 1.65. The
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Figure 27: Perturbation theory for constant, semielliptic, Gaussian and square lattice
d.o.s.

error of the perturbation theory is OpU2
0 q at t “ 0, and it further grows in time with

OppU1´U0q
2t2q. Therefore, large enough times becomes inaccessible in this method even

for very weak quenches. Hence, we expect a significantly larger error at time t˚ « 1.65
than at t˚ « 0.53.

We compare the results of DMFT and the perturbation theory in figure 28. Initially, the
difference is minimal pU0 ď 2q and increases with time as expected. The error remains
small for small U1 « 0.5 in the depicted times. The error increases at a much greater
rate for larger U1. The perturbation theory is in good agreement with the numerical
data for times t À 0.5 and thus explains the first observed crossing point. The right
column of figure 28 shows close-up views of the crossing regions. The DMFT lines
lie further to the right than the corresponding perturbative lines. Hence, the DMFT
crossing region is shifted slightly to later times compared to the narrow crossing point
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Figure 28: Double occupation after an interaction quench from U0 to U1. Solid lines:
nonequilibrium DMFT data.97 Dashed lines: perturbative results from equation (III.19)
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of perturbation theory at t˚ “ 0.526404.

A close-up view of the second crossing point at t˚ « 1.65 is shown in figure 29. The
perturbative prediction is in good agreement for U1 “ 0.5, but not for U1 “ 1 in
which case the crossing region occurs at t « 1.75. This is significantly later than the
perturbative value t˚ “ 1.64790. The crossing region’s time window increases in the
U1 “ 0.5 case from a sharp ∆t˚ « 0.546´ 0.530 “ 0.016 around the first crossing point
to a broader ∆t˚ « 1.69´ 1.61 “ 0.08 around the second one. The broadening indicates
a stronger deviation from perturbation theory. The deviation induces a breakdown of
the second crossing region for U1 ě 1 as neighboring lines do not intersect with each
other, e.g., the lines of U0 “ 0 and U0 “ 0.5 for U1 “ 1 in figure 29.
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Figure 29: Close-up view on second crossing point. Solid lines: nonequilibrium DMFT
data.97 Dashed lines: perturbative results from equation (III.19)

To analyze these crossing points systematically we now ask, which d.o.s. induces a
second crossing point within our method. We use the parameterized symmetric d.o.s.
from reference99 for this investigation,

ρnpεq “
n` 1

4n

´

1´
ˇ

ˇ

ˇ

ε

2

ˇ

ˇ

ˇ

n¯

.

More spectral density is distributed at the center of the band for small n, and increasing
n distributes it more evenly, as seen on the left side of figure 30. The corresponding
J̃Dpεq are depicted on the right side of figure 30. Their peaks grow and shift to smaller
ε for smaller n.

The time evolution in figure 31 exhibit no second crossing point for n “ 1 and it emerges
for n ě 2. The crossing times are listed in table 5, and they shift to earlier times with
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Figure 30: Parameterized d.o.s. (left) and corresponding α4pεq “ J̃Dpεq (right)

increasing n, which makes them sharper in nonperturbative calculations. We found
three d.o.s. - triangle pn “ 1q, Gaussian, and square lattice - with a single crossing
point: Their common feature is a more pronounced density peak. The flatter densities
exhibit a second crossing point. Therefore, the existence of a second crossing point is a
criterion for whether a d.o.s. is mostly flat or peaked. We note that similar conclusions
can be drawn from the crossing point in the local spectral function as it reveals details
of the noninteracting d.o.s. at its band edges.99
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Figure 31: Perturbation theory for ρnpεq with close-up view (right) and long-time limit
as dotted lines

In summary, perturbation theory predicts crossing points for first-order observables
and different initial but fixed final Hamiltonian. The comparison with nonequilibrium
DMFT shows that earlier crossing times t˚ and weaker interactions U1 increase the
sharpness of the crossing region. The deviation from perturbation theory shifts and
broadens the crossing regions. Crossing points are called isosbestic points and are a
generic feature if a linear approximation is applicable.100
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n 1 2 3 5 8

t˚1 0.700995 0.603257 0.558392 0.51594 0.438075
t˚2 1.96021 1.75271 1.58609 1.32381

∆D
p1q
qu p8q -0.0551087 -0.0477122 -0.044257 -0.0409581 -0.034831

Table 5: Perturbative crossing-point values for the double occupation and ρnpεq

d) Relaxation after interaction quenches

In this subsection, we apply our method to the occupation numbers after the quench in
the Hubbard model in infinite spatial dimensions. We discuss general features and show
one explicit example in figures 32. In infinite dimensions, the occupation probability
xn̂σkyt depends only on the energy εk. We thus find the same general behavior of xn̂σkyt
for all density of states (d.o.s.). In particular, the states below the Fermi surface get
depopulated, and the states above it are filled, while the total number of particles is
conserved. The increase or decrease is not monotonous but is overlayed with oscillations.
The dynamics are more pronounced for the states closer to the Fermi surface and less
for the states towards the band edges.

Figure 32: Quench from U0 “ 1 to U1 “ 1.5 with semielliptic d.o.s. within our method
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Next, we investigate the relaxation behavior to the plateau value. We restrict our
investigation to quenches. There the mix-term becomes equal to the ramp-term for
second-order observables and we label it quench-term,

fpt ą 0q “ 1 ñ ∆a
p2q
mixptq “ ∆ap2qrampptq “ ∆ap2qqu ptq .

It is thus sufficient to study the relaxation to the prethermalization plateau for this
quench-term. First, we evaluate the general form and obtain three contributions,

∆ap2qqu ptq “

8
ż

´8

dε Jâpεq

t
ż

0

dt1

t1
ż

0

dt2 eipε`iδqpt1´t2q

“

8`iδ
ż

´8`iδ

dε Jâpεq

ˆ

1´ eiεt

ε2
`
it

ε

˙

.

The last term is linear in time t but it vanishes due to Jâpεq “ Jâp´εq and Jâpε “ 0q “ 0,

∆ap2qqu ptq “

8
ż

´8

dε Jâpεq
1´ cospεtq

ε2
.

The linear term can survive for periodically driven systems. The first term is time-
independent and gives the plateau value. The cosine function describes oscillations,
which are averaged out in the long-time limit. In figure 33, we display one numerical
example for the jump at the Fermi energy. A close-up view on the plateau value reveals
smaller damped oscillations. Next, we derive the long-time relaxations, and it governs
these smaller oscillations. The long-time behavior of our observables is determined by
the functions F˘σ ptq. For a finite bandwidth, we partially integrate them to expand in
powers of inverse time t´1,

F`σ ptq “

εF
ż

εmin

ρσpεqe
itεdε

“

„

e´itερσpεq

´it

εmax

εF

´

„

e´itερ1σpεq

p´itq2

εmax

εF

`Opt´3
q .

The expansion for F´σ ptq works analogously. When we evaluate an occupation number,
we integrate a product of three functions of type F˘σ ptq over time t. The integration

98



3 INTERACTION QUENCHES, RAMPS AND PERIODIC DRIVES

2 4 6 8 10 12
t

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

Δn
(2)(t)

0 5 10 15 20 25 30
t-0.433

-0.432

-0.431

-0.430

-0.429

-0.428
Δn

(2)(t)

Figure 33: Closeup view on damped oscillations in the discontinuity of the Fermi surface
after an interaction quench with constant d.o.s.

does not alter the power law t´3 as it is multiplied by an oscillatory function. Thus,
our occupation numbers relax with t´3 or faster. The discontinuity at the Fermi surface
can relax with t´2 as oscillation frequencies cancel each other out. We evaluate the
long-time behavior of the discontinuity at the Fermi surface and the kinetic energy for
the semielliptic d.o.s. ,

∆np2qptq ´∆np2qp8q “
29{23 cospt` 1

4
πq

t7{2π5{2
`Opt´4

q ,

E
p2q
kinptq ´ E

p2q
kinp8q “

29{2

t9{2π7{2
sinpt´

3π

4
q `Opt´5

q ,

and the constant d.o.s. ,

∆np2qptq ´∆np2qp8q “ ´
3 sinptq ´ 3

4
sinp2tq ` 1

9
sinp3tq

2t3
`Opt´4

q ,

E
p2q
kinptq ´ E

p2q
kinp8q “

4cosptq ´ 3 cosp2tq ` 4
3

cosp3tq ´ 1
4

cosp4tq

16t4
`Opt´5

q .

The semielliptic d.o.s. relaxes faster because its d.o.s. vanishes at the band edges. The
noninteger power law stems from the infinite derivative at the band edges. We compute
an envelope function from our large-time expansion, and it encloses the oscillations
perfectly on intermediate times, as seen in figure 34. This method of computing the
relaxation behavior can be applied analogously to ramps. We expect the same power-law
decay as for the quench but with altered oscillations and amplitude.

The relaxation of the double occupation is exactly the negative of the kinetic en-
ergy due to energy conservation. The double occupation oscillates around its plateau
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Figure 34: Enveloping the long-time behavior after an interaction quench with semielliptic
(right) or constant (left) d.o.s.

value for the constant and semielliptic d.o.s. . Thus our method predicts infinitely many
crossing points with ∆Dp1qpt˚q “ ∆D

p1q
ad for these two d.o.s. .
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Figure 35: Fermi gap (left) and kinetic energy (right) after an interaction quench for
the Gaussian d.o.s.

For the Gaussian d.o.s. , we can compute the two main observables analytically and
obtain for the quench,

∆np2qptq “

1
ż

1
3

db a3pbq2
e´

t2

4b ´ 1

π
?
b

, E
p2q
kinptq “

1
ż

1
4

db a4pbq
2b` pt2 ´ 2bqe´

t2

4b

4
?
π3b5

. (III.20)

One feature is that the discontinuity at the Fermi surface is a strictly decreasing function.
The two functions are plotted in figure 35. They decrease Gaussian for large times and
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thus much faster than for a d.o.s. with finite bandwidth. Moreover, this Gaussian decay
causes a much smoother dynamic than the power-law decay for a d.o.s. with finite
bandwidth.

In conclusion, we predict relaxation to the prethermal plateau in two stages. First, the
large initial oscillations quickly relax, and then small oscillations prevail on intermediate
times as they are weakly damped for certain d.o.s. . For example the Gaussian d.o.s.
does not exhibit this second stage of relaxation.

e) Ramps: Crossover from quench to adiabatic regime

In this subsection, we examine interaction ramps during a finite time interval T . They
thus lie in between the adiabatic ramp and the quench. There will be initial oscilla-
tions comparable to the quench for short ramping times, but the observables change
monotonously if the ramping times are long enough. The example in figure 36 exhibits
no oscillations as the ramping is slow, T “ 10.

Figure 36: Linear ramp from U0 “ 1 to U1 “ 1.5 over T “ 10 with square lattice d.o.s.
within our method

The main objective of this subsection is to compare of the plateau values after various
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ramps for second-order observables. The plateau value after the quench is exactly twice
the value of the adiabatic ramp73,80,85 for all second-order observables. Therefore, we
expect that the plateau values lie in between for all finite ramps. By contrast, the plateau
value of the first-order observables is independent of ramping function and ramping time.

The ramping functions start at t “ 0 with fp0q “ 0 and stop at t “ T with fpt ě T q “ 1.
We consider a class of smooth activation functions Snpxq for our ramping protocol. They
are widely used in programming101–104 for small n. They have the definition105

Snpxq “ xn`1
n
ÿ

m“0

ˆ

n`m

m

˙ˆ

2n` 1

n´m

˙

p´xqm . (III.21)

They are the Hermite interpolation between the points p0, 0q and p1, 1q with vanishing
first n´ 1 derivatives at both points. Our ramping functions are displayed in figure 37
and defined as

fnptq “

$

&

%

0 for t ă 0
Sn

`

t
T

˘

for 0 ă t ă T
1 for T ď t

. (III.22)

The plateau values are computed from the Jâpεq and the specific ramping protocol fptq.
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Figure 37: Ramping functions from equations (III.21) and (III.22)
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First, we evaluate the general time evolution for the ramping protocol fptq. Next, we
take the long-time average,

∆ap2qrampptÑ 8q “ lim
τÑ8

τ
ż

0

dt

τ
∆ap2qrampptq “

ż

dεJâpεqhramppεq ,

hramppεq “ lim
τÑ8

τ
ż

0

dt

τ

´

T
ż

0

dτ1

τ1
ż

0

dτ2 fpτ2q cosppτ1 ´ τ2qεq

`

t
ż

T

dτ1

T
ż

0

dτ2 fpτ2q cosppτ1 ´ τ2qεq `

t
ż

T

dτ1

τ1
ż

T

dτ2 cosppτ1 ´ τ2qεq
¯

.

For the quench phqupεq “
1
ε2
q and the adiabatic switching phadpεq “

1
2ε2
q, the functions

hramppεq are known. For the linear ramp, we have,

hlin. ramppεq “
1

2ε2
`

1´ cospTεq

ε4T 2
with fptq “ f0ptq .

In the limits T Ñ 0 and T Ñ 8, thus gives the correct functions for quench and adiabatic
switching. The prethermalization plateau values for kinetic energy and discontinuity at
the Fermi surface are depicted in figure 38. We computed the values for various ramps
and observe the monotonic decrease from the quench to the adiabatic case. Generally, the
kinetic energy approaches the adiabatic limit faster than the discontinuity. Surprisingly,
the adiabatic limit is reached at later times for smoother ramps. Our explanation for
this phenomenon is that increasing smoothness n results in a higher peak slope of the
ramping functions. A higher slope corresponds to a more abrupt procedure, which
brings us closer to the quench.

The behavior for the occupation numbers is shown in figure 39. The states closer to
the Fermi surface are more strongly affected than the states towards the band edges. A
smoother ramp leads to reaching the adiabatic limit at longer ramping times. Up to
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Figure 38: Prethermalization plateau of kinetic energy (bottom) and discontinuity at εF
(top)

now, we have investigated the ramp term. Next, we take the mixing term into account
for initially interacting states. Its general value is computed as

∆a
p2q
mixpt ą T q “

ż

dεJâpεq
´

T
ż

0

dτ1

τ1
ż

0

dτ2 fpτ2q cosppτ1 ´ τ2qεq

`

t
ż

T

dτ1

T
ż

0

dτ2 fpτ2q cosppτ1 ´ τ2qεq `

t
ż

T

dτ1

τ1
ż

T

dτ2 cosppτ1 ´ τ2qεq
¯

“ ∆ap2qqu pt´ T q `

ż

dεJâpεq

T
ż

0

dτ2 fpτ2q
sinppt´ τ2qεq

ε
.

When we take the long-time average, only the quench term remains

lim
τÑ8

τ
ż

0

dt

τ
∆a

p2q
mixptq “ ∆ap2qqu ptÑ 8q “ 2∆a

p2q
ad .
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Figure 39: Prethermalization plateau for various occupation numbers above εF

Thus, the long-time limit of the mixing term is independent of the ramping protocol.
This is a feature of a first-order observable. For the quench, the mixing and ramp term
are identical and have the same long-time limit. Furthermore, we expect the same value
for adiabatically ramping directly to g0 `∆g and ramping adiabatically there in two
steps. For a two-step adiabatic ramp, we have proven that

pg0 `∆gq2∆a
p2q
ad “ g2

0∆a
p2q
ad ` g0∆g∆a

p2q
mixp8q

loooomoooon

“2∆a
p2q
ad

`p∆gq2 ∆ap2qrampp8q
looooomooooon

“∆a
p2q
ad

.

In summary, ramps fall in between quench and adiabatic value.84 Some observables, i.e.,
kinetic energy, converge faster to the adiabatic limit than others, i.e., the discontinuity
at the Fermi surface. The deviation from the prethermal plateau to the ground state is
not affected by initial interactions.

f) Periodically driven system

Periodic, high-frequency driving can engineer interesting effective Hamiltonians which are
very distinct from their equilibrium counterparts.106 This new line of research is termed
“Floquet engineering” and has motivated new interest in periodically driven systems.
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III PRETHERMALIZATION INDUCED BY WEAK INTERACTIONS

Here, we investigate a periodically driven interaction fptq “ p1´ cospωtqq{2 with our
method. This scenario was computed at stroboscopic times with Floquet analysis and
the quench equations by reference.89 Within our framework, it is straightforward to
evaluate it at arbitrary times.

Figure 40: Periodic drive between U0 “ 1 and U1 “ 1.5 with T “ 5, ω “ 2π
T

and constant
d.o.s. within our method

An example is depicted in figure 40. We observe the driving frequency in the time-
dependent occupation probabilities. The Fermi gap shrinks further after each period in
this example. We deduce this behavior by evaluating the general form of the ramp term,

∆ap2qrampptq “

8
ż

´8

dε Jâpεq

t
ż

0

dτ1
1´ cospωτ1q

2

τ1
ż

0

dτ2
1´ cospωτ2q

2
eipε`iδqpτ1´τ2q .
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3 INTERACTION QUENCHES, RAMPS AND PERIODIC DRIVES

We perform the time integration analytically and obtain

∆ap2qrampptq “

8`iδ
ż

´8`iδ

dε Jâpεq
3ε4 ´ 3ε2ω2 ` 4ω4

16 pε3 ´ εω2q
2 `

8`iδ
ż

´8`iδ

dε Jâpεq
it p3ε2 ´ 2ω2q

8ε pε2 ´ ω2q

´

ˆ

cospωtq ´
cosp2ωtq

4

˙

8`iδ
ż

´8`iδ

dε
Jâpεq

4ε2 ´ 4ω2

´

8`iδ
ż

´8`iδ

dε Jâpεq

ˆ

i sinpωtq p2ε2 ´ ω2q

4εωpε2 ´ ω2q
´

iε sinp2ωtq

16ε2ω ´ 16ω3

˙

´

8`iδ
ż

´8`iδ

dε Jâpεq
ω2eiεt pε2 cosptωq ´ ε2 ´ iεω sinptωq ` ω2q

4 pε3 ´ εω2q
2 .

The last term vanishes in the long-time limit due to the factor eiεt, while the other terms
prevail for large times. The first term gives a plateau, the second term is linear, and the
remaining terms cause oscillations with frequency ω or 2ω.

We evaluate the linear-in-time term by replacing the integration above the real axis by
a delta function plus a principal value integral,

8`iδ
ż

´8`iδ

dx
fpxq

x
“ ´iπfp0q ` P

8
ż

´8

dx
fpxq

x
.

Due to the symmetry Jâpεq “ Jâp´εq, the principal value integral results in zero and only
the delta terms contribute. As for the quench, we have Jâpε “ 0q “ 0 and Jâpεq “ Jâp´εq,
thus the linear term gives

8`iδ
ż

´8`iδ

dε Jâpεq
it p3ε2 ´ 2ω2q

8 pε3 ´ εω2q
“
tπJâpωq

8
.
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For the sine term we also find that the delta function contributes and that the principal
value integral vanishes. The simplified expression is then

∆ap2qrampptq “
πJâpωq

4

ˆ

t

2
´

sinpωtq

ω
`

sinp2ωtq

4ω

˙

`

8
ż

´8

dε
Jâpεq

4pε2 ´ ω2q

„

3ε4 ´ 3ε2ω2 ` 4ω4

4ε2 pε2 ´ ω2q
´

ˆ

cospωtq ´
cosp2ωtq

4

˙

´

8
ż

´8

dε Jâpεq
ω2 cospεtq pε2 cosptωq ´ ε2 ` ω2q ` ω2ε sinpεtq sinptωq

4 pε3 ´ εω2q
2 .

We recover the result from reference,89 when we insert the stroboscopic times tm “
2πm
ω

,
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Figure 41: Energy increases due to periodic driving for various d.o.s.

∆ap2qrampptmq “
tmπJâpωq

8
`

8
ż

´8

dε Jâpεq
ω4 p1´ cospεtmqq

4 pε3 ´ εω2q
2 .
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Next, we analyze the linear term as it heats the system. The growth rate of the linear-in-
time term is π

8
Jâpωq. We choose the kinetic energy as an observable because it captures

the essential energy increase. The double occupation contributes to the energy as well,
but it does not have a linear term. Only if the linear term vanishes for all occupation
numbers, then it vanishes for the kinetic energy as well. We observe the linear growth
for ω ă 2W “ 4 for all d.o.s. in figure 41. The Gaussian d.o.s. does not have finite
bandwidth, and thus it exhibits linear growth for any driving frequency. The heating
rate strongly depends on the frequency, and we depict the corresponding JĤ0

pωq in
figure 42. Each JĤ0

pεq peaks at the value ω˚, which is determined by

1 2 3 4 5
ϵ
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0.06

0.08

JH0 (ϵ)
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Figure 42: Term responsible for linear heating

BJĤ0
pωq

Bω

ˇ

ˇ

ˇ

ˇ

ω˚

“ 0 and JĤ0
pωq “ |ω|α4p|ω|q .

The peak values are listed in table 6. The peak appears around ω˚ « W “ 2 for all

d.o.s. constant semielliptic Gaussian square lattice
ω˚ 2.16908 1.84212 2.37397 1.80793

JĤ0
pω˚q 0.0868304 0.0799781 0.0649045 0.0688302

Table 6: Optimal heating frequency for various d.o.s.

example d.o.s. . Hence, we conclude that driving with ω « W will always lead to rapid
heating independent of the specific d.o.s. .
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The linear term for the occupation numbers stems from Jεkpωq “ sgnpεkqα3pω´|εk|q and
the function α3pεq is finite in the interval p0, 3W {2q. Therefore, we have four different
regimes for the linear terms of the occupation numbers. First, all linear term vanishes
for fast driving with ω ě 2W . Second, states at the band edges with |εk| ą ω ´ 3W {2
show linear growth for 2W ą ω ě 3W {2. An example is depicted on the left side of
figure 43. The growth rate increases closer to the band edges. Third, all occupation
numbers are linear for 3 ą ω ą W {2. Fourth, states towards the Fermi surface with
|εk| ă ω are linear for slow driving W {2 ě ω ą 0. An example is depicted on the right
side of the figure 43, where the growth rate increase for states closer to the Fermi surface
as the function α3pεq is monotonously increasing in the interval p0,W {2q.

10 20 30 40
t

0.05

0.10

0.15

0.20

Δnϵ,ramp
(2)(t)

const. d.o.s. with ω=3.5

ϵ=0.1

ϵ=0.2

ϵ=0.3

ϵ=0.4

ϵ=0.5

ϵ=0.6

ϵ=0.7

ϵ=0.8

ϵ=0.9

10 20 30 40
t

0.05

0.10

0.15

0.20

Δnϵ ,ramp
2(t)

const. d.o.s. with ω=0.5

ϵ=0.1

ϵ=0.2

ϵ=0.3

ϵ=0.4

ϵ=0.5

ϵ=0.6

ϵ=0.7

ϵ=0.8

ϵ=0.9

Figure 43: Ramp term of occupation numbers for periodic driving

If we start from an interacting state, then the mixing term contributes as well,

∆a
p2q
mixptq “

8
ż

´8

dε Jâpεq

t
ż

0

dτ1

τ2
ż

0

dτ2
1´ cospωτ2q

2
eipε`iδqpτ1´τ2q

“

8`iδ
ż

´8`iδ

dε
Jâpεq

2ε2
`

8`iδ
ż

´8`iδ

dε Jâpεq
it

2ε
´

8`iδ
ż

´8`iδ

dε Jâpεq
iε sinptωq ` ω cosptωq

2ω pε2 ´ ω2q

`

8`iδ
ż

´8`iδ

dε Jâpεq
eitεω2

2ε2 pε2 ´ ω2q

“ ´
πJâpωq sinptωq

2ω
`

8
ż

´8

dε Jâpεq

ˆ

1

2ε2
´

cosptωq

2 pε2 ´ ω2q
`

cosptεqω2

2ε2 pε2 ´ ω2q

˙

.
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The linear contribution of the mixing term vanishes, and the plateau term is independent
of the driving frequency. Thus, initial interactions do not affect the linear heating.
However, the plateau value and the oscillations are altered by initial interactions.
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Figure 44: Mixing term of occupation numbers for periodic driving
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Figure 45: Double occupation change due to periodic driving for various d.o.s.

The mixing term rapidly relaxes to steady oscillations around a plateau value in figure
44. The ramp term for the occupation numbers with ε ą 0 is always positive, but the

111
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mixing term can be negative. The occupation numbers are restricted to non-negative
values and therefore the second-order corrections obey the inequality,

g2∆np2qε ptq “ g2
0∆n

p2q
ε,ad ` g0∆g∆n

p2q
ε,mixptq `∆g2∆np2qε,rampptq ą 0 for ε ą 0 .

The double occupation oscillates around a constant value, as seen in figure 45. This
value is independent of the driving frequency ω and corresponds to a ramp to the mean
interaction strength. Thus, the mixing term and the first-order observable have similar
qualitative behavior. This indicates that the mixing term is similar to a first-order
observable.

In conclusion, the linear heating89 is not affected by initial interactions or the double
occupation. Furthermore, our method reveals more details of the dynamic as it is not
restricted to stroboscopic times.
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4 Photoinduced prethermalization

In the previous section, the dynamics were induced by a time-dependent interaction.
Here, the interaction remains constant, but the hopping Hamiltonian become time-
dependent. This is a new class of problem, and in particular, the weakly interacting
system will be hit by a short homogeneous electric field pulse.

As the noninteracting Hamiltonian commutes with itself at different times, the oc-
cupation numbers are time-independent in the absence of interactions. Observables such
as kinetic energy and current thus have trivial dynamics in this case. The prethermal-
ization dynamics are therefore generated due to the time-independent interactions, and
we compute them by applying equations (III.5) and (III.7).

Our perturbative method operates on the time scale of the inverse hopping ampli-
tude. Consequently, we can compute the prethermalization regime if the end of the
pulse lies within this time window. However, the pulse must not extend into the ther-
malization time scale, determined by inverse interaction strength. The derivation of the
thermalization time scale is discussed in the outlook subsection 6.a). Some tools from
the previous sections are not applicable here, making the evaluation more tedious. Some
results will be quite technical and specific to the chosen model. Our main goal is to
show that an electric field pulse will generate a prethermal state in a weakly interacting
system and to characterize this state.

This section is structured as follows. First, we evaluate equations (III.5) and (III.7)
with time-dependent single-particle energies. Second, we describe a homogeneous time-
dependent tight-binding Hamiltonian, using the We achieve this by applying the Peierls
substitution. Third, we evaluate the expectation values for the Hubbard model with
infinite dimensions. We present all resulting terms explicitly for this model and com-
pute the resulting values for two shapes of pulses. We will find that observables are
linear or quadratic in electric field strength. We will also observe that the prethermal
plateau is linear in pulse duration. We find that it is necessary to expand at least to
second order in interaction and electric field strength to capture the prethermal state.
Linear response theory always predicts a return to the initial state. Here, we compute
the conductivity in linear response theory, which relates the external to the internal
electric field.107 Next, we evaluate the change in conductivity after a pump pulse. Our
method predicts the same conductivity for the prethermal plateau as in a thermal state
with the corresponding energy. Therefore, a probe pulse with a momentum resolution
would be needed to observe the prethermal state. Finally, the prethermal momentum
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distribution turns out to be well approximated by a universal scaling law for long pulses.
We propose pumping near the Drude peak frequency to generate a pronounced and
long-lived nonthermal state.

a) Hamiltonian with homogeneous electric field

Here, we introduce our effective Hamiltonian in order to evaluate equations (III.5) and
(III.7) in the next subsection. As in section 3, we switch on the interactions adiabatically
to generate the interacting state. Our auxiliary time-dependent Hamiltonian consists
out of three contributions. The first is the noninteracting time-independent hopping
Hamiltonian Ĥ0. The second is the change in the hopping Hamiltonian caused by the
electric field δĤ0ptq, which vanishes before and after the pulse. The last part is the
adiabatically ramped interaction, which generates the initially interacting state,

Ĥptq “ Ĥ0 ` δĤ0ptq ` g fptqV̂ with fptq “

"

eδt for t ă 0
1 for t ě 0

with δ Ñ 0`. Our auxiliary initial state is a noninteracting eigenstate

|Ψpt “ ´8qy “ |Ψ0y with
´

Ĥ0 ` δĤ0ptq
¯

|Ψ0y “ E0ptq|Ψ0y . (III.23)

The electric field is homogeneous. Therefore, the Hamiltonian Ĥ0`δĤ0ptq is transitional
invariant during the pulse, and the initial state stays an eigenstate. It will be the Fermi
sea for the explicit computation as in the previous section. Furthermore, the hopping
Hamiltonian commutes with itself at different times,

”

Ĥ0 ` δĤ0ptq, Ĥ0 ` δĤ0pt
1
q

ı

“ 0 . (III.24)

The assumption in equation (III.24) is valid if the electric field acts uniformly. This
allows us to apply equation (III.5) and the time ordering in Û0ptq can be omitted,

Û0pt1, t2q “ Tą exp
!

´ i

t1
ż

t2

dτ Ĥ0 ` δĤ0pτq
)

“
ÿ

m

|ΨmyxΨm|e
´i

t1
ş

t2

dτ Empτq

.

Here, t|Ψmyu are the eigenstates of Ĥ0. The technical difference compared to section 3
is that the noninteracting eigenenergies are now time-dependent.
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b) General method

Next, we insert our auxiliary Hamiltonian into equations (III.5) and (III.7). We insert
the eigenbasis t|Ψmyu of Ĥ0 and separate the expectation value into a time-independent

contribution and a time-dependent contribution ϕ
pjq
m ptq. The next step is to bring these

ϕ
pjq
m ptq into a usable form for the three regimes: adiabatic ramp, during and after the

pulse. The procedure is similar to section 3. However, we cannot use the Jâpεq and
J̃Âpεq because this requires time-independent eigenenergies Em.

We compute the second-order observables with equation (III.5),

xâyt “ xây0 ` g
2
p´1q

t
ż

´8

dt1

t1
ż

´8

dt2x
”

Ĥ1,Ipt2q,
”

Ĥ1,Ipt1q, â
ıı

y0

loooooooooooooooooooooooooooomoooooooooooooooooooooooooooon

“∆ap2qptq

`Opg3
q .

We insert the operator Ĥ1,Iptq “ fptqV̂Iptq and rewrite the expectation value as

x

”

V̂Ipt2q,
”

V̂Ipt1q, â
ıı

y0

“ xV̂ U :0pt1, t2q
”

V̂ , â
ı

U0pt1, t2qy0 ´ xU
:

0pt1, t2q
”

V̂ , â
ı

U0pt1, t2qV̂ y0

“ xV̂ U :0pt1, t2q
”

V̂ , â
ı

U0pt1, t2qy0 ´ xV̂ U
:

0pt1, t2q
”

â, V̂
ı

U0pt1, t2qy
˚
0

“ 2Re
!

xV̂ U :0pt1, t2q
”

V̂ , â
ı

U0pt1, t2qy0

)

“ ´
ÿ

m

e
i
t1
ş

t2

dτ ∆Empτq

|V0m|
2 ∆am ` c.c. . (III.25)

Let us abbreviate the differences of eigenenergies ∆Empτq “ Empτq ´ E0pτq and eigen-

values ∆am “ am ´ a0. We identify then the time-dependent contributions ϕ
p2q
m ptq

in

∆ap2qptq “
ÿ

m

|V0m|
2 ∆am

t
ż

´8

dt1

t1
ż

´8

dt2 fpt1qfpt2qe
i
t1
ş

t2

dτ ∆Empτq

` c.c.

loooooooooooooooooooooooooomoooooooooooooooooooooooooon

“ϕ
p2q
m ptq

. (III.26)
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We proceed as for the first-order observables and apply equation (III.7),

xÂyt “ xÂy0 ` g i

t
ż

0

dt1x
”

Ĥ1,Ipt1q, ÂIptq
ı

y0

looooooooooooooomooooooooooooooon

“∆Ap1qptq

`Opg2
q .

Next, we rewrite the expectation value,

ix
”

V̂Ipt1q, ÂIptq
ı

y0 “ ixV̂ U :0pt, t1qÂU0pt, t1qy0 ´ ixU
:

0pt, t1qÂU0pt, t1qV̂ y0

“ ixV̂ U :0pt, t1qÂU0pt, t1qy0 ´ ixV̂ U
:

0pt, t1qÂU0pt, t1qy
˚
0

“ 2Re
!

ixV̂ U :0pt, t1qÂU0pt, t1qy0

)

“
ÿ

m

ie
i
t
ş

t1

dτ ∆Empτq

V0mAm0 ` c.c. , (III.27)

and identify the time-dependent term ϕ
p1q
m ptq for the first-order observables,

∆Ap1qptq “
ÿ

m

V0mAm0

t
ż

´8

dt1 ifpt1qe
i
t
ş

t1

dτ ∆Empτq

loooooooooooooomoooooooooooooon

“ϕ
p1q
m ptq

`c.c. . (III.28)

We then convert the convolutions in ϕ
p1q
m ptq and ϕ

p2q
m ptq from equations (III.28) and

(III.26) into usable forms. We distinguish three regimes: adiabatic ramp, during and
after the pulse.

Adiabatic ramp

The adiabatic ramp gives the same contributions as the time-independent Rayleigh-
Schrödinger perturbation theory,94–96

ϕp1qm pt “ 0q “ i

0
ż

´8

dt1 fpt1qe
it1∆Em δÑ0

ÝÑ
´1

∆Em
, (III.29)

ϕp2qm pt “ 0q “ 2

0
ż

´8

dt1

t1
ż

´8

dt2 fpt1qfpt2q cos ppt1 ´ t2q∆Emq
δÑ0
ÝÑ

1

∆E2
m

. (III.30)

We already encountered this in section 3.
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During the pulse

The noninteracting energies become time-dependent during the electric field pulse,
t ě 0. We separate the time-dependent contribution δEmptq form the time-independent
difference, ∆Emptq “ ∆Em ` δEmptq with ∆Empt ă 0q “ ∆Em. We transform the

expressions of ϕ
p1q
m ptq and ϕ

p2q
m ptq into two parts. The first gives the contribution of

the adiabatic ramp and the second captures the field excitations. For the first-order
observables, we split the time integration at the end of the ramp pt “ 0q

ϕp1qm ptq “ i

t
ż

´8

dt1 fpt1qe
ipt´t1q∆Em exp

¨

˝i

t
ż

t1

dτδEmpτq

˛

‚

“ i

0
ż

´8

dt1 fpt1qe
ipt´t1q∆Em ` i

t
ż

0

dt1 eipt´t1q∆Em exp

¨

˝i

t
ż

t1

dτδEmpτq

˛

‚ .

The first term, we evaluate in the adiabatic limit and represent it as a time-independent
value plus an integral,

i

0
ż

´8

dt1 fpt1qe
ipt´t1q∆Em δÑ0

ÝÑ
´eit∆Em

∆Em
“

´1

∆Em
´ i

t
ż

0

dt1eipt´t1q∆Em .

Consequently, we have separated ϕ
p1q
m ptq into an time-independent and time-dependent

contribution,

ϕp1qm ptq “
´1

∆Em
` i

t
ż

0

dt1 eipt´t1q∆Em

»

–exp

¨

˝i

t
ż

t1

dτδEmpτq

˛

‚´ 1

fi

fl . (III.31)

If there is no field, we have δEmptq “ 0, and only the term from the adiabatic switching
survives. This behavior is expected because the instantaneous state is an exact eigenstate
of our Hamiltonian,86–88 and the observables are constant in time. The evaluation is more
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advanced for the second-order observables with two time convolutions. We compute the
ramp for t2 ă t1 ă 0 and obtain

ϕp2qm ptq “ 2<
t
ż

´8

dt1

t1
ż

´8

dt2 fpt1qfpt2qexp
´

i

t1
ż

t2

dt1 p∆Em ` δEmpt
1
qq

¯

“
1

∆E2
m

` 2<
t
ż

0

dt1 exp
´

i

t1
ż

0

dt1 p∆Em ` δEmpt
1
qq

¯

ˆ

"

t1
ż

0

dt2 exp
´

´ i

t2
ż

0

dt1 p∆Em ` δEmpt
1
qq

¯

`

0
ż

´8

dt2 fpt2qe
´i∆Emt2

*

.

Next, we apply partial integration on the term in the curly braces,

t1
ż

0

dt2 exp
´

´ i

t2
ż

0

dt1 p∆Em ` δEmpt
1
qq

¯

P.I.
“

i

∆Em

„

exp
´

´ i

t1
ż

0

dt1 p∆Em ` δEmpt
1
qq

¯

´ 1

` i

t1
ż

0

dt2 δEmpt2qexp
´

´ i

t2
ż

0

dt1 p∆Em ` δEmpt
1
qq

¯



.

The first term does not contribute as it is fully imaginary when multiplied by the factor
in front of the braces. The second term cancels out with

0
ż

´8

dt2 fpt2qe
´i∆Emt2 δÑ0

ÝÑ
i

∆Em
.

Therefore, solely the third term remains in the final form,

ϕp2qm ptq “
1

∆E2
m

´ 2<
t
ż

0

dt1

t1
ż

0

dt2 exp
´

i

t1
ż

t2

dt1 p∆Em ` δEmpt
1
qq

¯δEmpt2q

∆Em
. (III.32)

Equation (III.32) satisfies the check with δEmptq “ 0 as well. We note that equations
(III.31) and (III.32) can be converted into other forms, but the presented forms are best
suited to our scenario.
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After the pulse

The pulse stops at time tfin and δEmpt ą tfinq “ 0. The integrand vanishes after the
pulse in equation (III.31), and we restrict the integration to the pulse duration,

ϕp1qm ptq “
´1

∆Em
` ieit∆Em

tfin
ż

0

dt1 e´it1∆Em

»

–exp

¨

˝i

tfin
ż

t1

dτδEmpτq

˛

‚´ 1

fi

fl . (III.33)

If we assume that the ∆Em are continuously spread, then the second term vanishes for
large times t. Integrating a smooth function in ∆Em times eit∆Em generally results in
a t´1 decay, which is explained in equation (II.18). Thus, the interaction energy and
other first-order observables relax to their values prior to the pulse.

Next, we compute the contribution of the second-order observables after the pulse,

ϕp2qm ptq ´ ϕ
p2q
m ptfinq “

“ ´2<
t
ż

tfin

dt1

t1
ż

0

dt2 exp
´

i

t1
ż

t2

dt1 p∆Em ` δEmpt
1
qq

¯δEmpt2q

∆Em

“ ´2<
t
ż

tfin

dt1eipt1´tfinq∆Em

tfin
ż

0

dt2 exp
´

i

tfin
ż

t2

dt1 p∆Em ` δEmpt
1
qq

¯δEmpt2q

∆Em

“ 2< 1´ eipt´tfinq∆Em

i∆Em

tfin
ż

0

dt2 exp
´

i

tfin
ż

t2

dt1 p∆Em ` δEmpt
1
qq

¯δEmpt2q

∆Em
. (III.34)

The second term of this expression goes to zero for large times due to eit∆Em . Thus, the
prethermalization plateau is computed as the first term plus the value at the end of the
pulse.

In this subsection, we reformulated all terms of interest. They are time-independent if
no electric field is applied. We performed all limits, i.e. δ Ñ 0` and t1, t2 Ñ ´8. In the
next subsection, we construct the explicit time-dependent eigenenergies in our model.

c) Electric field pulse on the hypercubic lattice

Here, we briefly review the formalism used by V. Turkowski and J. K. Freericks108

to capture an external electric field by a free Hamiltonian in infinite dimensions. An
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electromagnetic field is described by a scalar potential Φpr, tq and a vector potential
Apr, tq,

Epr, tq “ ´∇Φpr, tq ´
1

c

BApr, tq

Bt
.

Next, the Landau gauge is applied where Φpr, tq “ 0 and the electric field is fully
captured by the vector potential. We note that the electric field Epr, tq inside the solid
is not equal to the external excitation field.107 The Peierls substitution109 is used to
describe the internal electric field by modifying the hopping amplitudes,

tij Ñ tij exp
´

´ i
e

~c

Rj
ż

Ri

dr ¨Apr, tq
¯

.

The electric field is time-dependent but shall have no spatial dependence. This setup
is called dipole approximation, and it is adequate if the applied field varies slowly on
the atomic scale, which is the case for optical frequencies.14 The electromagnetic field
does not satisfy Maxwell’s equations, which is a drawback of the dipole approximation.
The Peierls substitution requires a slowly varying magnetic field,110 which is true for
the dipole approximation as the magnetic field vanishes.

We will consider the limit of infinite dimensions, for which the hopping needs to
be scaled as tÑ t˚{

?
2d.57 Adding the vector potential to the nearest-neighbor hopping

Hamiltonian in d dimension on the hypercubic lattice gives

Ĥ0 ` δĤ0ptq “
ÿ

σ,k

εpk ´
ea

~c
Aptqqn̂σk with εpkq “ ´

t˚
?
d

d
ÿ

j“1

cospkjq . (III.35)

The current is the main observable and is computed as14

ĵα “ ´c
B

´

Ĥ0 ` δĤ0ptq
¯

BAαptq
“
eat˚

~
?
d

ÿ

σ,k

sinpkα ´
ea

~c
Aαptqqn̂σk .
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We use the trick from reference108 to simplify the situation and set the field direction
in eA “ p1, 1, . . . , 1q and c ” 1, ea~ ” 1. Consequently, the time-dependent dispersion
simplifies to

εk ` δεkptq ” εpk ´Aptqq “ ´
t˚
?
d

d
ÿ

j“1

cospkj ´ Aptqq

“ cospAptqqεk ` sinpAptqqεk with εk “ ´
t˚
?
d

d
ÿ

j“1

sinpkjq .

εk quantifies how antiparallel k is to eA, ´k ¨eA „ εk. The time-dependent Hamiltonian
has the compact form

Ĥ0 ` δĤ0ptq “ Ĥ0 cospAptqq ` Ĥ0 sinpAptqq with Ĥ0 “
ÿ

σ,k

εkn̂σk . (III.36)

The noninteracting Hamiltonian Ĥ0` δĤ0ptq consists of two time-independent operators

Ĥ0 and Ĥ0 with time-dependent factors. The two main observables, current and kinetic
energy, are computed as

j ” xĵ ¨ eAyt “ cospAptqqxĤ0yt ` sinpAptqqxĤ0yt ,

Ekin ” xĤ0 ` δĤ0ptqyt “ cospAptqqxĤ0yt ` sinpAptqqxĤ0yt .

For our discussion, we compute the expectation values of Ĥ0 and Ĥ0 as well. This
Hamiltonian concerning contains the essential aspects of a real electric field pulse., but
nevertheless allows us to construct a computational scheme, as discussed in the next
subsection.

d) Hubbard model with infinite spatial dimensions

In the previous subsection, we discussed the details of the hopping Hamiltonian including
the electric field. Here, we explain the computational procedure for the expectation
values of the Hubbard model with infinite spatial dimensions. First, we recall the results
from subsection 3.b) and extend them to the field-pulse in the diagonal direction. Second,
we present all expressions in a list of explicit expressions. Last, we explain a computation
technique, which enables us to extract numerical values from the expressions.

We use the time-dependent Hamiltonian from equation (III.36) in a Hubbard model with
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time-independent interaction U . The expectation values for the occupation numbers
were derived in subsection 3.b). We replace

tĤ0 ÝÑ

ż

dτ Ĥ0 ` δĤ0pτq “ τ1Ĥ0 ` τ2Ĥ0 ,

τ1 “

ż

dτ cospApτqq , τ2 “

ż

dτ sinpApτqq ,

D̂Ipτ1, τ2q “ eipτ1Ĥ0`τ2Ĥ0qD̂e´ipτ1Ĥ0`τ2Ĥ0q .

This leads to the replacement F˘σ pR, tq Ñ F˘σ pR, τ1, τ2q for the Hubbard model,

f`σkpRi, τ1, τ2q “ e´ipRi¨k`τ1εk`τ2εkqxn̂σky0 ,

f´σkpRi, τ1, τ2q “ eipRi¨k`τ1εk`τ2εkqp1´ xn̂σky0q ,

F˘σ pRi, τ1, τ2q “
1

L

ÿ

k

f˘σkpRi, τ1, τ2q .

The expectation values are identical to subsection 3.b),

x

”

D̂,
”

D̂Ipτ1, τ2q, n̂σk

ıı

y0 “ 2<
ÿ

i,s“˘

sf sσkpRi, τ1, τ2qF
´s
σ pRi, τ1, τ2q

ź

λ“˘

F λ
σ pRi, τ1, τ2q ,

ix
”

D̂, D̂Ipτ1, τ2q

ı

y0 “ 2<i
ÿ

i

ź

λ“˘

F λ
σ pRi, τ1, τ2qF

λ
σ pRi, τ1, τ2q ,

x

”

D̂,
”

D̂Ipτ1, τ2q, Ĥ0

ıı

y0 “
B

Bτ1

ix
”

D̂, D̂Ipτ1, τ2q

ı

y0 ,

x

”

D̂,
”

D̂Ipτ1, τ2q, Ĥ0

ıı

y0 “
B

Bτ2

ix
”

D̂, D̂Ipτ1, τ2q

ı

y0 .

.

Ri “ 0 is the only finite contribution in infinite dimensions,57 and the problem simplifies
to

F˘σ pτ1, τ2,Rq
dÑ8
ÝÑ δR,0F

˘
σ pτ1, τ2q ,

F˘σ pτ1, τ2q “

ż

dε

ż

dε ρpε, εqe¯ipτ1ε`τ2εq
"

xn̂σεεy0 for `

p1´ xn̂σεεy0q for ´
,

ρpε, εq “
ÿ

k

δpε´ εkqδpε´ εkq .
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V. Turkowski and J. K. Freericks108 computed ρpε, εq for the tight-binding Hamiltonian.
They used the method developed by Müller-Hartmann,111–113 which utilizes the Fourier
transform,

8
ż

´8

dε

8
ż

´8

dε ρpε, εqeit1ε`it2ε “

π
ż

´π

dk1

2π
. . .

π
ż

´π

dkd
2π

eit1εk`it2εk

“

¨

˝

π
ż

´π

dk

2π
e
it˚?
d
p´t1 cospkq`t2 sinpkq

˛

‚

d

“

ˆ

1´
t21 ` t

2
2

4d
`Opd´

3
2 q

˙d
dÑ8
ÝÑ e´

t21`t
2
2

4 ,

ñ ρpε, εq “

8
ż

´8

dt1
2π

8
ż

´8

dt2
2π

e´it1ε´it2εe´
t21`t

2
2

4 “
e´ε

2´ε2

π
.

We choose the paramagnetic Fermi sea xn̂σky0 “ xn̂σky0 “ ΘpεF ´ εkq at half-filling,
εF “ 0, as auxiliary the initial state. Then, the functions F˘σ pτ1, τ2q become identical,

F pτ1, τ2q “ F`σ pτ1, τ2q “ F`σ pτ1, τ2q “ F´σ pτ1, τ2q “ F´σ pτ1, τ2q

“

8
ż

0

dε
e´ε

2`iετ1

?
π

8
ż

´8

dε
e´ε

2`iετ2

?
π

.

List of explicit expressions

We bow obtain the final expressions that need to be evaluated. We have to sum according
to (III.26) and (III.28) with xΨn|D̂|Ψmy “ Dnm,

Dp1qptq “
ÿ

m

|D0m|
2 ϕp1qm ptq ` c.c. , n

p2q
σkptq “

ÿ

m

|D0m|
2 ∆nσk,mϕ

p2q
m ptq .

We insert ϕ
p1q
m ptq as written in equations (III.29), (III.31) and (III.33). For ϕ

p2q
m ptq, we

use the expressions from (III.30), (III.32) and (III.34). The effect of the electric field is
captured by

δEmpt2q “ ∆Em pcospApt2qq ´ 1q `∆Em sinpApt2qq .

Next, we replace the factors ∆Em and ∆Em with differentiations,

p∆Emq
n1p∆Emq

n2eiτ1∆Em`iτ2∆Em “

ˆ

B

Biτ1

˙n1
ˆ

B

Biτ2

˙n2

eiτ1∆Em`iτ2∆Em .
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We have thus reformulated ϕ
p1q
m ptq and ϕ

p2q
m ptq in terms of eiτ1∆Em`iτ2∆Em and operations

on it, which are independent of m. Thus, we execute the sum over m and insert the
expectation values for the double occupation in infinite dimension,

ÿ

m

ieiτ1∆Em`iτ2∆Em |D0m|
2
` c.c. “ ix

”

D̂, D̂Ipτ1, τ2q

ı

y0
dÑ8
ÝÑ 2< iF pτ1, τ2q

4 ,

and the occupation numbers pεk ą 0q,

´
ÿ

m

eiτ1∆Em`iτ2∆Em |D0m|
2 ∆nσk,m ` c.c. “ x

”

D̂,
”

D̂Ipτ1, τ2q, n̂σk

ıı

y0

dÑ8
ÝÑ ´2< eiεkτ1`iεkτ2F pτ1, τ2q

3 .

We use the abbreviations

BEpt2q “ pcospApt2qq ´ 1q
B

Biτ1

` sinpApt2qq
B

Biτ2

,

τ1pt1, t2q “

t1
ż

t2

dτ cospApτqq , τ2pt1, t2q “

t1
ż

t2

dτ sinpApτqq , (III.37)

and the results for the double occupation are

Dp1qp0q “ ´2<
ˆ

B

Biτ1

˙´1

F pτ1, 0q
4

ˇ

ˇ

ˇ

ˇ

ˇ

τ1“0

, ∆Dp1qptq “ Dp1qptq ´Dp1qp0q , (III.38)

∆Dp1qptq
tą0
“ 2< i

t
ż

0

dt1 F pτ1pt, t1q, τ2pt, t1qq
4
´ F pt´ t1, 0q

4 , (III.39)

∆Dp1qptq
tątfin
“ 2< i

tfin
ż

0

dt1 F pt´ tfin ` τ1ptfin, t1q, τ2ptfin, t1qq
4
´ F pt´ t1, 0q

4 . (III.40)
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We drop the spin index as our system is paramagnetic. The vector k is occurs only in
the two energies εk and εk. Therefore, we rename xn̂σkyt Ñ xn̂εkεkyt and the resulting
terms above the Fermi surface pε ą 0q are

n
p2q
εε p0q “ <

ˆ

B

Biτ1

˙´2

eiτ1εF pτ1, 0q
3

ˇ

ˇ

ˇ

ˇ

ˇ

τ1“0

, ∆n
p2q
εε ptq “ n

p2q
εε ptq ´ n

p2q
εε p0q , (III.41)

∆n
p2q
εε ptq

tą0
“ ´

t
ż

0

dt1

t1
ż

0

dt2 2<
ˆ

B

Biτ1

˙´1

BEpt2qe
iτ1ε`iτ2εF pτ1, τ2q

3

ˇ

ˇ

ˇ

ˇ

ˇτ1 “ τ1pt1, t2q
τ2 “ τ2pt1, t2q

, (III.42)

∆n
p2q
εε ptq

tątfin
“ ∆n

p2q
εε ptfinq ´

tfin
ż

0

dt2 2<
ˆ

B

Biτ1

˙´2

iBEpt2qe
iτ1ε`iτ2εF pτ1, τ2q

3

ˇ

ˇ

ˇ

ˇ

ˇτ1 “ τ1ptfin, t2q
τ2 “ τ2ptfin, t2q

`

tfin
ż

0

dt2 2<
ˆ

B

Biτ1

˙´2

iBEpt2qe
iτ1ε`iτ2εF pτ1, τ2q

3

ˇ

ˇ

ˇ

ˇ

ˇτ1 “ t´ tfin ` τ1ptfin, t2q
τ2 “ τ2ptfin, t2q

. (III.43)

Below the Fermi surface pεk ă 0q, the sign of the corrections changes and εk is replaced

by its absolute value, n
p2q
εε ptq “ ´n

p2q
´εεptq, due to particle-hole symmetry at half-filling.

The terms for Ĥ0 and Ĥ0 are computed analogously and we replace

eiτ1ε`iτ2εF pτ1, τ2q
3
ÝÑ

B

Biτ1

F pτ1, τ2q
4 for Ĥ0 ,

eiτ1ε`iτ2εF pτ1, τ2q
3
ÝÑ

B

Biτ2

F pτ1, τ2q
4 for Ĥ0

in equations (III.41), (III.42) and (III.43). The next step is to replace

ˆ

B

Biτ1

˙n1
ˆ

B

Biτ2

˙n2

eiτ1ε`iτ2εF pτ1, τ2q
3 and

ˆ

B

Biτ1

˙n1
ˆ

B

Biτ2

˙n2

F pτ1, τ2q
4 (III.44)

with numerically feasible terms. In our explicit terms, n1 and n2 take the integer values
n1 P t´2,´1, 0, 1u and n2 P t0, 1, 2u. If ni takes positive values, then we only need to
differentiate, but we have to integrate with the appropriate boundary conditions for
negative values. We will avoid the integration with a special computation technique,
which we explain in the following.
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Computation technique for integrations

In equation (III.44), we have to integrate if n1 ď ´1. Here, we provide a method to
avoid this integration. We apply the transformation

F pτ1, τ2q
m
“

¨

˝

8
ż

´8

dε
e´ε

2`iετ2

?
π

˛

‚

m
¨

˚

˝

8
ż

0

dε1 . . .

8
ż

0

dεm
e
´

m
ř

l“1
ε2l`iεlτ1

?
πm

˛

‹

‚

“ e´
mτ2

2
4

8
ż

0

dε0
eiτ1ε0
?
πm

8
ż

0

dε1 . . .

8
ż

0

dεm δpε0 ´
m
ÿ

l“1

εlqe
´

m
ř

l“1
ε2l

“ e´
mτ2

2
4

8
ż

0

dε0
eiτ1ε0
?
πm

εm´1
0

8
ż

0

dx1 . . .

8
ż

0

dxm δp1´
m
ÿ

l“1

xlqe
´ε20

m
ř

l“1
x2
l
.

Now, we integrate m´ 1 times and obtain

ˆ

B

Biτ1

˙1´m

F pτ1, τ2q
m
“ e´

mτ2
2

4

8
ż

0

db

8
ż

0

dε0
eiτ1ε0´bε

2
0

?
πm

ampbq

“ e´
mτ2

2
4

1
ż

1
m

db
ampbq
?
bπm

ˆ?
π

2
e´

τ2
1

4b ` iD`p
τ1

2
?
b
q

˙

, (III.45)

anpbq “

8
ż

0

dx1 . . .

8
ż

0

dxn δp1´
n
ÿ

i“1

xiqδpb´
n
ÿ

j“1

x2
jq .

We encountered the functions anpbq in subsection 3.b) and the computation of a3pbq and
a4pbq is done in appendix 1. We are avoiding the integrations because m´ 1` n1 ě 0
with m P t3, 4u. One drawback is that the integration over b has to be done numerically.
The procedure for the occupation numbers away from the Fermi surface works analogously.
There, we also have to integrate over ε0 numerically. The term of interest for ε ą 0 is

eiτ1εF pτ1, τ2q
3
“ e´

3τ2
2

4

8
ż

ε

dε0
eiτ1ε
?
π3

8
ż

0

dε1

8
ż

0

dε2

8
ż

0

dε3 δpε0 ´ ε´ ε1 ´ ε2 ´ ε3qe
´ε21´ε

2
2´ε

2
3

“ e´
3τ2

2
4

8
ż

ε

dε0 ε
2
0

8
ż

0

db
eiτ1ε´bε

2
0

?
π3

a3

˜

b

p1´ ε
ε0
q2

¸

.
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The function a3pbq is nonzero only between 1
3

and 1, hence we restrict our integration
region. We integrate twice and scale b to obtain

ˆ

B

Biτ1

˙´2

eiτ1εF pτ1, τ2q
3
“ e´

3τ2
2

4

1
ż

1
3

db a3pbq

8
ż

ε

dε0

ˆ

1´
ε

ε0

˙2
eiτ1ε0´bε

2
0

?
π3

. (III.46)

We recover the previous result in the limit εÑ 0. Now, we have covered all aspects of
the numerical procedure. We insert the numerical feasible terms from equations (III.45)
and (III.46) into equations (III.38) to (III.43). We compute the derivatives with respect
to τ1 and τ2 analytically. We need to find suitable exact or approximate forms for
τ1pt1, t2q and τ2pt1, t2q depending on Aptq. Then, we numerically integrate over b, t1 and
t2. For the occupation numbers away from the Fermi energy, we integrate numerically
over ε0 as well.

e) Numerical results

We now present our numerical results for nonperturbative electric fields. First, we
introduce the pulse protocols and discuss the trivial dynamics of the noninteracting
terms of kinetic energy and current,

Ekinptq “ E
p0q
kinptq ` U

2E
p2q
kinptq `OpU

3
q , E

p0q
kinptq “ xĤ0y0 cospAptqq ,

jptq “ jp0qptq ` U2jp2qptq `OpU3
q , jp0qptq “ xĤ0y0 sinpAptqq .

The operators of double occupation and occupation numbers are time-independent
in the Schrödinger picture, and their expectation values are therefore static on the
noninteracting level. Therefore, our main interest is the correction terms in interaction
strength.

Two classes of pulses and their noninteracting contribution

We have two different classes of internal electric field pulses. The first class is “simple”
oscillations with constant amplitude, which have the index one,

E1ptq “ E sin

ˆ

2πt

T

˙

ΘpmT ´ tqΘptq ,

A1ptq “ ´
ET

π
sin

ˆ

πt

T

˙2

ΘpmT ´ tqΘptq . (III.47)
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Figure 46: Normalized “simple” electric field (left) and vector potential (right)

For longer pulses, only additional oscillations are appended, and the shape is not affected.
The second shape is more “realistic” and has an enveloping function,

E2ptq “ E sin

ˆ

2πt

T

˙

sin

ˆ

πt

mT

˙

ΘpmT ´ tqΘptq ,

A2ptq “
EmT

2π

¨

˝

sin
´

πpm´2qt
mT

¯

m´ 2
´

sin
´

πpm`2qt
mT

¯

m` 2

˛

‚ΘpmT ´ tqΘptq . (III.48)

The amplitude changes more slowly for a greater number of oscillations. Examples are
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Figure 47: Normalized “realistic” electric field (left) and vector potential (right)

depicted in figure 46 for index 1 and in figure 47 for index 2. Eiptq and Aiptq vanish
after tfin “ Tm for both pulses. The vertical dotted lines indicate tfin “ Tm in the
following plots. T is the duration of one oscillation and m is the number of oscillations.
It is important that Aipt ą tfinq “ 0, because then the Hamiltonian before and after the
pulse are identical.

The zeroth-order term of the kinetic energy E
p0q
kinptq and current jp0qptq is shown in
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Figure 48: Normalized kinetic energy (left) and current (right) for “simple” pulse m “ 5

figures 48 and 49. During the pulse, their qualitative behavior is very similar to the
corresponding Aiptq even for high amplitudes pE{T ą 1q. The scaling with the field
strength E is approximately linear for the current and quadratic for the kinetic energy.
This scaling behavior stems from the expansions for small amplitudes E.

After the pulse, they have the same values as before. The explanation for this is simple.
The noninteracting state is for all times an eigenstate of Hamiltonian Ĥ0 ` δĤ0ptq.
Hence, its time evolution is trivial, and the dynamics of the observables stem from the
explicit time-dependence of the operators, which are given in equation (III.36). With
this statement, we close the discussion of the purely noninteracting results and advance
to the corrections in interaction strength.
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Figure 49: Normalized kinetic energy (left) and current (right) for “realistic” pulse
m “ 5

Prethermalization results

We focus on the corrections in interaction strength beginning with results for the double
occupation in figure 50. It scales quadratically with the field strength E, and the
qualitative behavior is affected for fields above E ą 2. The general shape of the curve is
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Figure 50: Double occupation for “simple” (left) and ”realistic” (right) pulse with T “ 2
and m “ 5

similar to ´Aiptq with a slight shift in time and short excursions to positive values at
the start and after the pulse. As a first-order observable, it relaxes to its initial value.
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Figure 51: Kinetic energy (top) and xĤ0y
p2q
t (bottom) for “simple” (left) and “realistic”

(right) pulse with T “ 2 and m “ 5

We see the change of kinetic energy and the unperturbed Hamiltonian Ĥ0 in figure 51.
They relax to a finite prethermalization plateau, as they are second-order observables.
The kinetic energy has stronger oscillations during the pulse, while Ĥ0 is more steady.

130



4 PHOTOINDUCED PRETHERMALIZATION

These two observables become identical after the pulse. The field strength E scales
these two observables quadratically.
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Figure 52: Current (top) and xĤ0y
p2q
t (bottom) for “simple” (left) and “realistic” (right)

pulse with T “ 2 and m “ 5

The current j and Ĥ0 are displayed in figure 52. The “simple” pulse on the left-hand side
exhibit different features than the “realistic” pulse on the right-hand side. We clearly
observe the prethermalization plateau in the left-hand plots for the “simple” pulse. The
plateau value on the right-hand side vanishes. This distinction still holds if we further
vary the parameters E, T , and m. We conclude that the current’s prethermalization
plateau vanishes for an enveloped pulse. This leads to the question under which general

circumstances the prethermalization plateau vanishes. The current and Ĥ0 oscillate
similarly, and both scale linear in E for the enveloped pulse in figure 52. The scaling
with E is not linear for the “simple” pulse.

Another difference between “simple” and “realistic” pulses becomes visible in the oc-
cupation numbers in figure 53. The “simple” pulse affects occupation numbers with
higher ε more. For the realistic pulse, we observe the opposite effect that the occupation
numbers with higher ε are less affected. For both pulses, the states at the Fermi surface
are affected the most, and the influence decreases away from it.
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Figure 53: Change in the occupation numbers at time t “ 1 for E “ 2 and T “ 2 for
“simple” (left) and “realistic” (right) pulse shape

The amplitude E scales the result in our examples and has very little influence on
the qualitative form. Of course, this is not valid anymore for E ą 2. However, these
values belong to extremely intense fields and are omitted here. Hence, our next step is
to expand in E for weak electric fields. This simplifies the discussion of the results as
the parameter space is reduced.

f) Expansion in field strength

We learned in the previous subsection that the numerical terms are dominated by the
linear or quadratic term in electric field strength. We extract those terms by expanding
for weak fields. The electric field strength E enters through function Aptq. We expand

xD̂yt and xĤ0yt to OpA2q because the first order vanishes and for xĤ0yt to OpAq. For
the occupations numbers xn̂εεyt, we compute the first- and second-order terms in Aptq.
We start by expanding the abbreviations from equation (III.37),

τ1pt1, t2q “ t1 ´ t2 ´

t1
ż

t2

dτ
Apτq2

2
`OpA4

q , τ2pt1, t2q “

t1
ż

t2

dτApτq `OpA3
q .

Consequently, we expand the integrand of the double occupation as

2< i
`

F pτ1pt, t1q, τ2pt, t1qq
4
´ F pt´ t1, 0q

4
˘

“ ´

»

–

t1
ż

t2

dτApτq2
B

Bτ1

` 2

¨

˝

t1
ż

t2

dτApτq

˛

‚

2fi

fl< iF pτ1, 0q
4

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

τ1“t1´t2

`OpA3
q .
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In an analogous manner, we obtain for the occupation numbers:

BEpt2qe
iτ1ε`iτ2εF pτ1, τ2q

3
ˇ

ˇ

τ1 “ τ1pt1, t2q
τ2 “ τ2pt1, t2q

“

ˆ

Apt2q
2

2

B

Biτ1

` Apt2q
B

Biτ2

˙

eiτ1ε`iτ2εF pτ1, τ2q
3

ˇ

ˇ

ˇ

ˇ

τ1 “ t1 ´ t2

τ2 “
t1
ş

t2

dτApτq

`OpA3
q

“
Apt2q

2

2

B

Biτ1

eiτ1εF pτ1, 0q
3

ˇ

ˇ

ˇ

ˇ

τ1“t1´t2

`Apt2q

ˆ

ε`
3

2
iτ2

˙

eiτ1ε`iτ2ε´
3
4
τ2
2F pτ1, 0q

3

ˇ

ˇ

ˇ

ˇ

τ1 “ t1 ´ t2

τ2 “
t1
ş

t2

dτApτq

`OpA3
q

“
Apt2q

2

2

B

Biτ1

eiτ1εF pτ1, 0q
3

ˇ

ˇ

ˇ

ˇ

τ1“t1´t2

` Apt2qεe
iτ1εF pτ1, 0q

3
ˇ

ˇ

τ1“t1´t2

` Apt2q

t1
ż

t2

dτ Apτqi

ˆ

ε2 `
3

2

˙

eiτ1εF pτ1, 0q
3

ˇ

ˇ

ˇ

ˇ

τ1“t1´t2

`OpA3
q . (III.49)

We obtain the expansions for xĤ0yt and xĤ0yt by integrating over equation (III.49)
times ε or ε. The linear term vanishes in xĤ0yt and the result is

2< BEpt2qF pτ1, τ2q
4
ˇ

ˇ

τ1 “ τ1pt1, t2q
τ2 “ τ2pt1, t2q

“ Apt2q

¨

˝´Apt2q
B

Bτ1

` 4

t1
ż

t2

dτ Apτq

˛

‚<iF pτ1, 0q
4

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

τ1“t1´t2

`OpA3
q .

The quadratic terms vanishes in xĤ0yt and we obtain

BEpt2q
B

Biτ2

F pτ1, τ2q
4

ˇ

ˇ

ˇ

ˇτ1 “ τ1pt1, t2q
τ2 “ τ2pt1, t2q

“ 2Apt2qF pτ1, 0q
4
ˇ

ˇ

τ1“t1´t2
`OpA3

q .

We insert the expansions back into equations (III.39), (III.40), (III.42) and (III.43). We
use the pulse shapes from equations (III.47) and (III.48) in our following results.

Prethermalization results

Now, we present the numerical results for the expansion in field strength. The second inte-
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Figure 54: Double occupation term for “simple” (left) and “”realistic” (right) pulse
shape with T “ 2 and m “ 5
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Figure 55: Second-order terms for “simple” (left) and “realistic” (right) pulse shape
with T “ 2 and m “ 5

ger of the exponent denotes the order in field strength, Apnqptq “ EmApn,mqptq`OpEm`1q.
The double occupation term has the exponent p1, 2q, and therefore, it scales linearly in
interaction strength U and quadratic in field strength E. The expansion term in figure
54 has the same features as the nonperturbative term in figure 50. Thus, the expansion
is accurate for the double occupation.

Next, we compare the expansion for the second-order observables in figure 55 with
figures 51 and 52. The plots for the enveloped pulse are in good agreement. However,

some features for the “simple” pulse are lost in the expansion. The current and Ĥ0
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Figure 56: Double occupation (top), Ĥ0 (middle) and Ĥ0 (bottom) with varying pulse
oscillations m for “simple” (left) and “realistic” (right) pulse shape
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have no prethermalization plateau for the expansion. Furthermore, the kinetic energy
oscillates into negative values in figure 51, but has positive values for all times in the
expansion. Hence, we these two effects originate from higher-order contributions. The
first one is the prethermalization plateau for the current, and the second one are negative
kinetic-energy corrections.

Now, we keep the pulse duration constant and vary the number of oscillations in
figure 56. We do not display current and kinetic energy because they can be computed

from Ĥ0 and Ĥ0. The impact generally increases for lower frequency. This means that
the oscillations are more pronounced in the observables, and the plateau values increase.
Especially the kinetic-energy plateau after the pulse, which is identical to the plateau

of Ĥ0, increases for lower frequency. The plateaus for current and Ĥ0 vanish after the
pulse.
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Figure 57: Plateau value of kinetic energy (top) and scaled (bottom) with varying pulse
oscillations m and periods T for “simple” (left) and “realistic” (right) pulse shape

In the following, we examine the prethermalization plateau of the kinetic energy in more
detail. We display the plateau value against the period duration T for various periods
m in the top plots of figure 57. The plateau value increase for lower frequencies, and the
increase becomes linear for T ě 6. Furthermore, longer wave trains increase the plateau.
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The lines are evenly spread, which indicates linearity in m.

We rescale the kinetic energy by the pulse duration Tm in the bottom plots of figure 57.
All ten lines collapse to a single line. The collapse is nearly perfect for the “realistic”
pulse, and slight deviations are observed for the “simple” pulse. The limit T Ñ 8 is a
finite value for the scaled kinetic energy. The plateau value of the kinetic energy is a
complicated function concerning frequency and pulse shape. However, it scales linearly
with duration and quadratically with field strength. For low-frequency pulses, it scales
linearly with T as well. The absorbed energy of the system is equal to the plateau value of
the kinetic energy within our method as the double occupation returns to its initial value.

The scaling of the prethermal plateau with mTE2 is the main result of this section and
will be further investigated in subsection i). There, we will compute prethermal plateau
in response to an external electric field pulse. For this, we require the conductivity in
linear response theory to relate the internal to the external electric field.

g) Linear response

The established method to study the effect of a weak electric field is the linear response
theory.27,60,90 First, we shortly introduce linear response theory and then compute the
conductivity. Finally, inserting the conductivity into the Maxwell equations will give us
the relation between the external and the internal electric field.

Generally, a time-independent Hamiltonian Ĥ is perturbed by a time-dependent external
field F ptq. We expand to the first order in this field F ptq. The operator χ̂ couples the
field to the Hamiltonian

Ĥt “ Ĥ ` χ̂F ptq .

This needs to be generalized for a spatially varying field,

Ĥt “ Ĥ `
ÿ

r

χ̂rFrptq .

The first-order term is computed for any observable Ô by

δxÔyt “ xÔyt ´ xÔy0 “

ż t

0

dτF pτqx
”

i pχ̂qH pτq,
´

Ô
¯

H
ptq

ı

y0 `OpF
2
q .
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The operators are in the Heisenberg picture with respect to Ĥ. We start from an
eigenstate at time t “ 0 and thus the expectation value of the commutator depends on
the time difference. We define a response function φÔpt´ τq,

x

”

iχ̂pτq, Ôptq
ı

y0 “ x

”

iχ̂, Ôpt´ τq
ı

y0 “ φÔpt´ τq .

This method has a general advantage. The response function is an equilibrium property
of the system together with χ̂ and Ô. We do not compute the time-dependence of xÔyt
for different pulses, but we investigate the pulse independent φÔpt´ τq. If we apply the
Laplace transformation, then the convolution becomes a multiplication,

LtÑzpδxÔytq “ LtÑzpF ptqq LtÑzpφÔptqq .

Conductivity

The electric field does not enter the Hamiltonian directly. Instead, the vector po-
tential Apr, tq shifts the momenta of the electrons. We use Landau gauge Epr, tq “
´c´1BtApr, tq. We drop the spatial dependence of Apr, tq as we focus on the dipole
approximation, which assumes a spatially homogeneous field. The general perturbation
in the dipole approximation is

δĤ0ptq “
ÿ

σ,k

”

εpk ´
ea

~c
Aptqq ´ εpkq

ı

n̂σk .

Expansion to OpA2q with Aptq “ eAAptq gives,

δĤ0ptq “ ´
ea

~c
AptqĤ

p1q
0 `

e2a2

2~2c2
Aptq2Ĥ

p2q
0 `OpA3

q ,

Ĥ
pnq
0 “

ÿ

σ,k

εpnqpkqn̂σk , εpnqpkq “
Bnεpk ` eAxq

Bxn

ˇ

ˇ

ˇ

ˇ

x“0

.

The current operator is

ĵptq “ ´c
BĤptq

BAptq
“ ´c

BδĤ0ptq

BAptq
“
ea

~
Ĥ
p1q
0 ´

e2a2

~2c
AptqĤ

p2q
0 `OpA2

q .

The expectation value of Ĥ
p1q
0 is usually zero, and the one of Ĥ

p2q
0 is finite without an

electric field. Therefore, the current is linear in Aptq and is computed in linear response
theory as

xĵyt “ ´
e2a2

~2c
AptqxĤ

p2q
0 yt ´ i

t
ż

tini

dτ
e2a2

~2c
Apτqx

”´

Ĥ
p1q
0

¯

Ĥ
pτq,

´

Ĥ
p1q
0

¯

Ĥ
ptq

ı

ytini
`OpA2

q .
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Every observable is expressed as the convolution of the electric field, Eptq “ ´c´1BtAptq,
with the response function. This defines the response function. The response function
of the current is the conductivity σ ” φĵ and its two parts are called diamagnetic and
paramagnetic conductivity,114

xĵyt “

t
ż

tini

dτ Epτqσpt, τq `OpE2
q ,

σpt, τq “ σdia
ptq ` σpm

pt, τq , σdia
ptq “

e2a2

~2
xĤ

p2q
0 yt ,

σpm
pt, τq “

e2a2

~2
i

t
ż

τ

dτ 1 x
”´

Ĥ
p1q
0

¯

Ĥ
pτ 1q,

´

Ĥ
p1q
0

¯

Ĥ
ptq

ı

ytini
. (III.50)

If the problem is time-independent except for the electric field, then the response
functions simplify to σdiaptq Ñ σdia and σpmpt, τq Ñ σpmpt ´ τq. The Laplace-Fourier
transformation is applied to transform the convolution to a multiplication,

fpωq “ LtÑ´iωpfptqq “
8
ż

0

dt epiω´δqtfptq , xĵyω “ Epωqσpωq .

Our method computes the equilibrium conductivity in Opg2q. The diamagnetic part has
a zeroth and second-order term,

σdia
“ σdia,p0q

` g2σdia,p2q
`Opg3

q , σdia,p0q
“
e2a2

~2
xĤ

p2q
0 y0 ,

σdia,p2q
“ ´

e2a2

~2

0
ż

´8

dt1

t1
ż

´8

dt2 fpt1qfpt2q x
””

VIpt2q,
”

V̂Ipt1q, Ĥ
p2q
0

ııı

y0 ,

and we obtain for our Hubbard model p e
2a2

~2 ” 1, Ĥ
p2q
0 “ ´Ĥ0, g “ U, t˚ “ 1q,

σdia,p0q
“ ´xĤ0y0 “

1

2
?
π
, σdia,p2q

“ ´E
p2q
kin “ ´

1
ż

1
4

db
a4pbq

2
?
π3b3

« ´0.0659 .
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The expectation value from the paramagnetic conductivity is computed as

x

”´

Ĥ
p1q
0

¯

Ĥ
pτ 1q,

´

Ĥ
p1q
0

¯

Ĥ
ptq

ı

ytini

“ ´g2

t
ż

´8

dt1

τ 1
ż

´8

dτ1 fpt1qfpτ1q x

””

VIpτ1q, Ĥ
p1q
0

ı

,
”

V̂Ipt1q, Ĥ
p1q
0

ıı

y0 `Opg
3
q . (III.51)

We rewrite the expectation value analogously to equation (III.25),

x

””

VIpτ1q, Ĥ
p1q
0

ı

,
”

V̂Ipt1q, Ĥ
p1q
0

ıı

y0

“ x

”

V, Ĥ
p1q
0

ı

,
”

U :0pt1, τ1qV̂ U0pt1, τ1q, Ĥ
p1q
0

ı

y0 ´ x

”

U0pt1, τ1qV U
:

0pt1, τ1q, Ĥ
p1q
0

ı

,
”

V̂ , Ĥ
p1q
0

ı

y0

“ x

”

V, Ĥ
p1q
0

ı

,
”

U :0pt1, τ1qV̂ U0pt1, τ1q, Ĥ
p1q
0

ı

y0 ´ x

”

V, Ĥ
p1q
0

ı

,
”

U :0pt1, τ1qV̂ U0pt1, τ1q, Ĥ
p1q
0

ı

y
˚
0

“ ´
ÿ

m

e
i
t1
ş

τ1

dτ ∆Empτq

|V0m|
2
p∆Ep1qm q

2
´ c.c. ,

with Ĥ
p1q
0 |Ψmy “ E

p1q
m |Ψmy, ∆E

p1q
m “ E

p1q
m ´ E

p1q
0 and Vnm “ xΨn|V̂ |Ψmy. We can

evaluate equation (III.50) as the eigenenergies are time-independent, ∆Emptq “ ∆Em.
For that, we need the integral

τ 1
ż

´8

dτ1fpτ1qe
´iτ1∆Em “

0
ż

´8

dτ1eτ1δe´iτ1∆Em `

τ 1
ż

0

dτ1e´iτ1∆Em

“
e´iτ

1∆Em ´ 1

´i∆Em
`

1

´i∆Em ` δ
“

e´iτ
1∆Em

´i∆Em
.

Then, the time integration gives

i

t
ż

τ

dτ 1
t
ż

´8

dt1

τ 1
ż

´8

dτ1 fpt1qfpτ1qe
i
t1
ş

τ1

dτ ∆Em

` c.c. “ i

t
ż

τ

dτ 1
eit∆Em

i∆Em

e´iτ
1∆Em

´i∆Em
` c.c.

“
eipt´τq∆Em ´ 1

∆E3
m

` c.c. .

Thus, the model-independent result for equation (III.50) is

σpm
pt, τq

Bt∆Em“0
“ σpm

pt´ τq “ g2σpm,p2q
pt´ τq `Opg3

q ,

σpm,p2q
ptq “

e2a2

~2

ÿ

m

|V0m|
2 2p∆Ep1qm q

2 cosp∆Emtq ´ 1

∆E3
m

.
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Application to our Hubbard model gives

σpm,p2q
ptq “

ÿ

m

|D0m|
22∆E

2

m

cos pt∆Emq ´ 1

∆E3
m

. (III.52)

We express the cosine function in its series form, and then every term is of type

ÿ

m

|D0m|
2eiτ1∆Em`iτ2∆Em

∆E
2

m

∆E3´2n1
m

ˇ

ˇ

ˇ

ˇ

ˇ

τ1“τ2“0

“

ˆ

B

Biτ1

˙´3`2n1
ˆ

B

Biτ2

˙2

xD̂eiτ1Ĥ0`iτ2Ĥ0D̂e´iτ1Ĥ0´iτ2Ĥ0y0

ˇ

ˇ

ˇ

ˇ

ˇ

τ1“τ2“0

“ p´1q1`n1

ˆ

B

Bτ1

˙´3`2n1
ˆ

B

Bτ2

˙2

F pτ1, τ2q
4

ˇ

ˇ

ˇ

ˇ

ˇ

τ1“τ2“0

(III.45)
“ p´1q1`n1

ˆ

B

Bτ1

˙2n1
B2e´τ

2
2

Bτ 2
2

1
ż

1
4

db
a4pbq
?
bπ4

ˆ?
π

2
e´

τ2
1

4b ` iD`p
τ1

2
?
b
q

˙

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

τ1“τ2“0

.

The response function is real and thus the term with the Dawson function D` does not
contribute. We take the derivatives with respect to τ1 and τ2 and then set them to zero.
This gives rational factors and negative powers in b,

´
B2e´τ

2
2

Bτ 2
2

ˇ

ˇ

ˇ

ˇ

ˇ

τ2“0

“ 2 , p´1qn1
B2n1e´

τ2
1

4b

Bτ 2n1
1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

τ1“0

“
p2n1 ´ 1q!!

p2bqn1
.

The sum results in the exponential series,

σpm,(2)
ptq “ 2

1
ż

1
4

db
a4pbq
?
bπ3

˜

8
ÿ

n“1

p´1qnt2n

2n!

p2n´ 1q!!

p2bqn

¸

“ 2

1
ż

1
4

db
a4pbq
?
bπ3

¨

˝

8
ÿ

n“1

´

´ t2

4b

¯n

n!

˛

‚

“ ´2

1
ż

1
4

db
a4pbq
?
bπ3

´

1´ e´
t2

4b

¯

.
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The Fourier-Laplace transformation gives

σpωq “ LtÑ´iωpσptqq “
8
ż

0

dt epiω´δqtσptq , σdia
pωq “

iσdia

ω ` iδ
,

σpm,p2q
pωq “ 2

1
ż

1
4

db
a4pbq
?
bπ3

ˆ

´i

ω ` iδ
`
?
πbe´ω

2b
` 2i

?
bD`p

?
bωq

˙

. (III.53)

The diamagnetic conductivity is proportional to i
ω`iδ

“ πδpωq` i
ω

, which is the behavior
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Re
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Figure 58: Paramagnetic conductivity in real time (left) and frequency (right)

of a perfectly metallic system. It stems from the noninteracting system and is renormal-
ized by the interaction. The paramagnetic conductivity has qualitatively different terms
due to the interaction. Our paramagnetic correction σpm,p2q is plotted in figure 58. We
will see that the most important feature is the real, finite contributions for ω ‰ 0 as the
δpωq terms do not contribute to the conductivity with respect to the external field.

Conductivity with respect to external field

We have computed the conductivity with respect to the internal electric field and now we
derive the conductivity with respect to the external electric field. The induced current
generates an additional vector potential Asys by the Maxwell equation,

`

B
2
t ´ c

2∇2
˘

Asyspr, tq “ 4πc jsyspr, tq ñ B
2
tAsysptq “ 4πc jsysptq .

The internal field is the superposition of the external field and the generated field,

Apr, tq “ Aextpr, tq `Asyspr, tq .
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We include the current jptqsys as a classical quantity according to Skolimowski et al.107

and set it equal to the expectation value of the quantum mechanical current,

jsysptq “ xĵyt .

The computation of the conductivity with respect to the external field σext is best done
in frequency space (ĵ “ eAĵ, Aptq “ eAAptq, Eptq “ eAEptq),

Eptq “ ´c´1
BtAptq ñ Epωq “

iω

c
Apωq ,

xĵyω “ Eextpωqσextpωq “ Epωqσpωq ,

cEpωq

iω
“
cEextpωq

iω
´

4πc

ω2
xĵyω ,

ñ σextpωq “
σpωq

εpωq
, εpωq “ 1` i

4π

ω
σpωq . (III.54)

The conductivity with respect to the external field σextpωq is directly computed from
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Figure 59: Conductivity with respect to the external field computed nonperturbatively
(solid lines) or perturbatively (dashed lines) in U

the conductivity with respect to the internal field σpωq. Our method expands the
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conductivity to OpU2q, σpωq “ σp0qpωq`U2σp2qpωq`OpU3q. When we compute σextpωq,
we have two options. First, we directly insert σp0qpωq ` U2σp2qpωq in equation (III.54)
and treat it nonperturbatively in U . Second, we expand to second order

σextpωq “
σp0qpωq

1` i4π
ω
σp0qpωq

` U2σp2qpωq

„

B

Bx

σp0qpωq ` x

1` i4π
ω
pσp0qpωq ` xq



x“0

`OpU3
q

and this is depicted in figure 59 as the dashed lines. The delta functions δpωq are
suppressed in both cases. The perturbative results (dashed lines) have a pole at
ω “

?
2pπq1{4 « 1.88 (in units of t˚ “ 1) and the nonpertubative results (solid lines) are

analytic and have a finite peak. The nonperturbative results have the typical features
of a Drude conductivity,32

σDrude
pωq “

σ0

1´ iωτ
, σDrude

ext pωq “
σDrudepωq

1` i4π
ω
σDrudepωq

.

Next, we quantify this similarity. We fit the two Drude parameters σ0 and τ by the
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Figure 60: Conductivity with respect to the external field computed nonperturbatively
(solid lines) or as Drude fit (dashed lines)

resonance peak,

=tσextpωresqu “ 0 , σextpωresq “ σDrude
ext pωresq ñ σ0 “ σextpωresq , τ “

4πσ0

ω2
res

.
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The Drude fit is very accurate for U ď 1 as we see in figure 60. Then it starts to deviate
at the high-frequency tail and around the peaks of the imaginary part.

We have assumed in our computation that the pre- and post-pulse Hamiltonian
are identical, Apτ ą tfinq “ 0. This requirement is realized for a metallic sys-
tem even if the long-time limit of the external vector potential does not vanish
Aextpt Ñ 8q “ const. ‰ 0 ñ Aextpω Ñ 0q „ i

ω`iδ
. For a metallic material, the

conductivity stays finite in the infrared limit σpω Ñ 0q „ ω0, e.g., the Drude conduc-
tivity is σpωq “ σ0

1´iωτ
. The relation between the internal and external vector potential

gives

Apωq “
Aextpωq

εpωq
ñ Apω Ñ 0q „

ˆ

πδpωq `
i

ω

˙

ω “ i ñ AptÑ 8q “ 0 .

The δpωq contribute to Aptq is suppressed by the factor ω, and thus the internal vector
potential vanishes for large times. This argumentation is not valid for an insulator, as it
has is no dc-current, and then the external and internal vector potential are identical
for ω Ñ 0.

Generally, the response functions φÔpt´ τq converge to a constant value for tÑ 8 and
finite τ . Therefore, the linear response theory prediction vanishes in the long-time limit
with Apτ ą tfinq “ 0,

lim
tÑ8

δxÔyt “ OpA2
q .

We have to include at least second-order terms in the field to capture a prethermal
state. Next, we compute the pump-probe conductivity, which treats the pump pulse
nonperturbatively and the probe pulse in linear response theory.

h) Pump-probe conductivity

Now, we consider a pump-probe scenario. Suppose that, a pump pulse excites the system,
and the following probe pulse measures an altered conductivity. Below, we compute the
conductivity for the probe pulse with equation (III.50), and the Hamiltonian includes
the pump pulse.
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We compute the change in the conductivity ∆σpt, τq, which is the conductivity of
the probe pulse after the pump pulse minus the equilibrium conductivity,

∆σpt, τq “ σpt, τq|Ĥ`δĤ0
´ σpt´ τq|Ĥ , ∆σdia

ptq “
e2a2

~2

´

xĤ
p2q
0 yt ´ xĤ

p2q
0 ytini

¯

,

∆σpm
pt, τq “

e2a2

~2
i

t
ż

τ

dτ 1 x

„

´

Ĥ
p1q
0

¯

Ĥ`δĤ0

pτ 1q,
´

Ĥ
p1q
0

¯

Ĥ`δĤ0

ptq



ytini

´ x

”´

Ĥ
p1q
0

¯

Ĥ
pτ 1q,

´

Ĥ
p1q
0

¯

Ĥ
ptq

ı

ytini
. (III.55)

We expect the dynamics of the diamagnetic conductivity to behave similarly to the
kinetic energy. In our particular model, they are equal to each other except for a factor
minus one, Ĥ

p2q
0 “ ´Ĥ0. This was investigated in subsection e) and f). We learned that

the plateau scales linearly in duration and quadratic in field strength of the pump pulse.
Next, we compute the change in the paramagnetic conductivity. We obtain the second-
order term with equation (III.51) and rewrite the time-dependent contribution with
equation (III.31),

x

„

´

Ĥ
p1q
0

¯

Ĥ`δĤ0

pτ 1q,
´

Ĥ
p1q
0

¯

Ĥ`δĤ0

ptq



ytini

“ g2
ÿ

l

|V0l|
2
´

∆E
p1q
l

¯2
t
ż

´8

dt1

τ 1
ż

´8

dτ1 fpt1qfpτ1q exp
´

i

t1
ż

τ1

dt1 p∆El ` δelpt
1
qq

¯

loooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooon

“eipt´τ
1q∆Elpϕ

p1q
l ptqq

˚
ϕ
p1q
l pτ 1q

´c.c.`Opg3
q .

We assume that the pump and the probe pulse have no overlap in time t, τ ą tfin. Thus,
the upper limit of the integrals in equation (III.31) are tfin. We use equation (III.33),

ϕ
p1q
l pt ą tfinq “

´1

∆El
` ieit∆Elhl ,

hl “

tfin
ż

0

dt1 e´it1∆El

»

–e
i
tfin
ş

t1

dt1δelpt
1q

´ 1

fi

fl “ ´

tfin
ż

0

dt1
e´it1∆El

∆El
e
i
tfin
ş

t1

dt1δelpt
1q

δelpt1q .
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Now, we compute the time-integration

´

ϕ
p1q
l ptq

¯˚

i

t
ż

τ

dτ 1eipt´τ
1q∆Elϕ

p1q
l pτ

1
q ` c.c.

“

ˆ

´1

∆El
´ ie´it∆Elh˚l

˙

i

t
ż

τ

dτ 1eipt´τ
1q∆El

ˆ

´1

∆El
` ieiτ

1∆Elhl

˙

` c.c.

“
eipt´τq∆El ´ 1

∆E3
l

`
eipt´τq∆El ´ 1

∆E2
l

e´it∆Elih˚l `
t´ τ

∆El
eit∆Elhl ` c.c.

and the first term gives the paramagnetic conductivity in equilibrium. Consequently,
the other terms give the change of the paramagnetic conductivity,

∆σpm,p2q
pt, τq “

e2a2

~2

tfin
ż

0

dt1
ÿ

l

|V0l|
2

´

∆E
p1q
l

¯2

∆E2
l

e
i
tfin
ş

t1

dt1δelpt
1q

δelpt1q

ˆ

ˆ

i
eiτ∆El ´ eit∆El

∆El
´ eit∆Elpt´ τq

˙

` c.c. . (III.56)

Every term has a factor eit∆El or eiτ∆El . Thus, the limit τ Ñ 8 pt ą τq gives
∆σpm,p2qpt, τq Ñ 0. Next, we evaluate equation (III.56) within our particular Hub-
bard model,

∆σpm,p2q
pt, τq “

tfin
ż

0

dt1 sinpApt1qqB03pt´ τ, τ1, τ2q ´ 2 sin2

ˆ

Apt1q

2

˙

B12pt´ τ, τ1, τ2q ,

Bn1n2p∆t, τ1, τ2q “ Bp2qn2
pτ2q

´

∆tB
p1q
n1`1pτ1q ´B

p1q
n1
pτ1q `B

p1q
n1
pτ1 ´∆tq

¯

,

Bp1qn pxq “

1
ż

1
4

db
a4pbq
?
π3b

ˆ

B

Bx

˙n

e´
x2

4b , Bp2qn pyq “

ˆ

B

By

˙n

e´y
2

,

τ1 “ t´ tfin `

tfin
ż

t1

dτ cospApτqq and τ2 “

tfin
ż

t1

dτ sinpApτqq .

Examples with fixed t are depicted in figure 61. The response is strongest directly
after the pulse pτ “ 10q followed by a rapid decay. In our particular Hubbard model,
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the terms vanish as a Gaussian function „ e´τ
2{4. The pump-field strength E scales

∆σpm,p2qpt, τq almost quadratically in the left plot of figure 61. Only, the line with E “ 2
does not follow the scaling law strictly.
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Figure 61: Change in paramagnetic conductivity after “simple” (left) or “realistic”
(right) pump pulse with T “ 2, m “ 5, t “ 15 and τ ą Tm

The term linear in Aptq has a factor p∆E
p1q
l q

3 in equation (III.56). Therefore, it is
expected to vanish for initial states with zero global momentum. The expansion in
pump-field strength gives in our model,

∆σpm,p2q
pt, τq “

tfin
ż

0

dt1

t1
ż

0

dt2Apt2qApt1qB04pt´ τ, t´ t2, 0q

´

tfin
ż

0

dt2
Apt2q

2

2
B12pt´ τ, t´ t2, 0q `OpA

3
q . (III.57)

It is computed as a convolution of B04pt´ τ, t, 0q or B12pt´ τ, t, 0q with the pump field.
These two functions are depicted in figure 62 and they converge to a universal line for
relative short times pt ą 4q, which is computed as the long-time limit,

lim
tÑ8

Bn1n2pt´ τ, t, τ2q “ Bp2qn2
pτ2qB

p1q
n1
pτq .

The probe pulse acts during times τ and the functions Bn1n2pt´ τ, t, τ2q nearly decay
to zero for τ ą 4. We conclude that if the time-delay between the pump and probe
pulse is greater than 4, then the paramagnetic conductivity is unchanged in our model,
∆σpm,p2q Ñ 0. This tells us that a probe pulse shortly after the pump pulse has a
pump-probe effect on the paramagnetic conductivity. A probe pulse long after the pump
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Figure 62: OpA2q contribution to the pump-probe paramagnetic conductivity

pulse has no affect in our model. The diamagnetic conductivity is proportional to the
kinetic energy in our model. The kinetic energy relaxes to a plateau value, and thus the
pump-probe conductivity relaxes to a plateau as well.

These results have the following consequences for the observation of the prethermal state.
Typically, a measuring protocol would have three steps. First, the pump excites the
system. Second, the system relaxes to the prethermal steady state. Finally, the probe
pulse detects the nonthermal steady state. The kinetic energy is constant under quasi-
particle scattering from the Boltzmann equation,45–47 which thermalizes the occupation
numbers at a later stage. Therefore, the prethermal plateau value of the kinetic energy
is equal to its equilibrium value after the pump pulse. This means that the conductivity
is identical for the steady prethermal state and the thermal state. Therefore, the probe
pulse would only detect the heating in our setup and does not resolve the nonthermal
state.

In our protocol, the pump and the probe pulse have identical directions. To detect
the prethermal state, we propose to pump and probe from different directions. If this
shows no indication of the prethermal state, we suggest replacing the probe pulse with
a momentum-resolved measuring technique. Improving our computational technique to
include at least Opg4q terms could further resolve this. The thermal and the prethermal
state have different momentum distributions in Opg2q, which should give a deviation in
the paramagnetic conductivity Opg4q. In the next subsection, we encounter a resonance
frequency at which the prethermal plateau is amplified. It would be worthwhile to
calculate the conductivity for this amplified prethermal state and compare it to the
conductivity in the thermal state.
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i) Scaled prethermal plateau

At the end of subsection f), we observed that the energy absorption is proportional to
the pulse duration and quadratic in field strength. Here, the proportionality factor is
the real part of the conductivity.107 First, we deduce this scaling behavior within a
real-time framework and apply the analogous steps to the occupation numbers. This
predicts a similar scaling behavior for the change in the distribution function as for the
system’s heating. Finally, we will give the model-independent proportionality factor
in equation (III.60) and compute it in our perturbative method. Furthermore, it is
straightforward to substitute the internal field with the applied external field to obtain
the experimentally relevant response.

The linear response does not affect the long-time limit. Therefore, we neglect terms
with a single time convolution. As we expand in the field, the second-order term is thus
the most important one. The energy absorption of the system is computed as

δĤ0ptq “ ´
ea

~c
AptqĤ

p1q
0 `OpA2

q ,

∆xĤyt “
´1

c2

t
ż
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dt1

t1
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dt2Apt1qApt2q
e2a2

~2
x

”´
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0

¯

H
pt2q,

”´

Ĥ
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¯

H
pt1q, Ĥ

ıı

ytini
looooooooooooooooooooooooooomooooooooooooooooooooooooooon

“
B2σpmpτq

Bτ2

ˇ

ˇ

ˇ

τ“t1´t2

`OpA3
q .

The expectation value is connected to paramagnetic conductivity. We apply the Fourier
transformation and the pulse shall end at tfin,

∆xĤytątfin
“

ż

dω
ω2<tσpmpωqu

c2π

tfin
ż

tini

dt1

t1
ż

tini

dt2Apt1qApt2qe
ipt1´t2qpω`iδq `OpA3

q ,

We assume that the electric field can be written as a superposition of sine and cosine
functions,

Eptq “ Eptq˚ “
ÿ

j

Eje
itωj ñ Aptq “ Aptq˚ “ ´c

ÿ

j

Ej
iωj

eitωj , (III.58)

and compute the time integrals,

1

c2
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ż

tini

dt1

t1
ż

tini

dt2Apt1qApt2qe
ipt1´t2qpω`iδq “

ÿ

j

|Ej|
2

ω2
j

iptfin ´ tiniq

ω ` iδ ´ ωj
`Opptfin ´ tiniq

0
q .
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This gives one term which is proportional to the pulse duration and has a delta
contribution, pω ` iδ ´ ωjq

´1 Ñ ´iπδpω ´ ωjq. The scaled long-time limit is

lim
tfinÑ8

∆xĤytątfin

tfin

“
ÿ

j

|Ej|
2<tσpm

pωjqu `OpE
3
q . (III.59)

This a very general statement, and we apply it to our two classes of pulses,

“simple”: E1ptq “ E sin

ˆ

2πt

T

˙

ñ Ej “
˘iE

2
, ωj “ ˘

2π

T
,

“realistic”: E2ptq “ E sin

ˆ

2πt

T

˙

sin

ˆ

πt

mT

˙

ñ Ej “
˘E

4
, ωj “ ˘

πp2m˘ 1q

Tm
.

At the end of subsection f), we found scaled universal functions in figure 57. They are
obtained by the limit mÑ 8 and the conductivity from equation (III.53),

“simple”: lim
mÑ8

∆xĤ0ytąTm

Tm
“
E2

2
<tσpm,p2q

pωqu
ˇ

ˇ

ω“ 2π
T

`OpE3
q ,
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“
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4
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pωqu
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ω“ 2π
T
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Figure 63: Plateau value of kinetic energy scaled by pulse duration Tm for “simple”
(left) and “realistic” (right) pulse shape

The absorbed energy differs for our two different pulses by a factor of two, which is
congruent to our finite pulses in figure 63. We expect that the prefactor for other
pulse shapes is computed from the mean quadratic amplitude. It is established that
the absorbed energy during one period of a monochromatic electromagnetic field is
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proportional to the real part of the conductivity.107 This is in congruence with our result
in equation (III.59) as the diamagnetic conductivity is entirely imaginary.

We plotted the real part of the conductivity in figure 58 for our Hubbard model,
which scales by U2. Next, we replace E2 Ñ E2

ext{|εpωq|
2 and compute the absorbed

energy from the external field. Our results are displayed in figure 64, and the resonance
peak increases for weaker interactions, which is a major difference to interaction drives.
The heating rate for weak interaction drives scales with U2 as discussed in subsection
3.f). We thus suggest photopumping a weakly interacting system at this resonance
frequency. The absorbed energy indicates a highly nonthermal state. The interparticle
scattering rate decreases with interaction strength, which we will discuss in subsection
6.a). The slow thermalization rate should stabilize the nonthermal state, and we expect
a long-lived prethermal state.
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Figure 64: Energy absorption factor with respect to the external field

We apply the analogous steps to the momentum distribution to capture the features of
the prethermal state. We neglect the single time convolutions, and the dominating term
in the long-time limit is
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We assume that the long-time limit of the Heisenberg operator is diagonal in the
eigenbasis of Ĥ, thus it commutes with the Hamiltonian,

lim
tÑ8

pn̂σkqH ptq “
ÿ

m

|ΨmyxΨm|n̂σk|ΨmyxΨm| ñ

”
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tÑ8
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ı

“ 0 .

Furthermore, the initial state is an eigenstate of Ĥ and the expectation value’s time-
dependence simplifies to depend on the time difference t1 ´ t2,

x
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Now, we apply the analogous steps and obtain for the distribution function,

lim
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As this term scales linear in pulse duration, the predicted ensemble is nonthermal.
Equations (III.59) and (III.60) are general and not restricted to a specific model.
The next goal is to compute this prethermal plateau prediction within second-order
perturbation theory. We apply the expansion on the first,
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Ĥ
p1q
0 ,

”

V̂Ipτq, n̂σk

ıı

`Opg2
q .

153



III PRETHERMALIZATION INDUCED BY WEAK INTERACTIONS

We insert the eigenstates of Ĥ0 to compute the expectation value,
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Now, we evaluate the time-integration and the term with eit∆Em vanishes in the long-time
limit as the energies ∆Em are generally continuously distributed,
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The model-independent perturbative result is
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We insert our particular Hubbard model, and the sum over all eigenstates gives pεk ě 0q

ÿ

m

eiτ1∆Em`iτ2∆Em |D0m|
2 ∆nσk,m

∆E2
m

dÑ8
“

ˆ

B

Biτ1

˙´2

eiτ1εk`iτ2εkF pτ1, τ2q
3

(III.46)
“ eiτ2εk´

3τ2
2

4

1
ż

1
3

db a3pbq

8
ż

εk

dε0

ˆ

1´
εk
ε0

˙2
eiτ1ε0´bε

2
0

?
π3

.

154



4 PHOTOINDUCED PRETHERMALIZATION

The main contribution to the plateau is given as pεk ě 0q

ñ
p2q
σkpωq “

ˆ

3

2
` ε2k

˙

1
ż

1
3

db a3pbq

8
ż

εk

dε0

ˆ

1´
εk
ε0

˙2
e´bε

2
0

?
π3

8
ż

´8

dτ

2π
eiτpε0´ωq ` eiτp´ε0´ωq

“ Θp|ω| ´ εkq

ˆ

3

2
` ε2k

˙

1
ż

1
3

db a3pbq

ˆ

1´
εk
|ω|

˙2
e´bω

2

?
π3

. (III.61)

This result applied to for the enveloped pulse. Equation (III.58) has an unexpected
ωj “ 0 contribution for the “simple” pulse and we need to take the ωj “ 0 term into
account as well
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We observe a fast convergence to the long-pulse limit in figure 65 except in the high-
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Figure 65: Plateau value of the occupation number with εk “ εk “ 0 scaled by ω2

Tm
for

“simple” (left) and “realistic” (right) pulse shape

frequency regime for the “simple” pulse shape. Therefore, the long-pulse limit is a valid
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approximation for relatively brief pulses pm ě 5q. In the low-frequency regime, the
functions relax to a constant value marked by a dotted line for m “ 8.

We are interested in prethermal state induced by an external electric field. The ñσkp0q
contribution for the “simple” pulse shape is therefore not relevant. Hence, we replace
the internal with the external field pE2 Ñ E2

ext{|εpωq|
2q,

lim
mÑ8

∆xn̂σkytąTm
Tm

(III.54)
“

πsE2
extñσkpωq

|ω ` 4πiσpωq|2
`OpE3

extq . (III.62)

For the “realistic” pulse, the pulse-shape factor s is 1{4 and would be different (but of
Op1q) for other realistic pulse shapes. Equation (III.62) is one of our main results. It
predicts a nonthermal distribution function if the thermalization rate is sufficiently slow.
The perturbative results for our Hubbard model are displayed in figure 66. The right-side
plot illustrates the scaling caused by the weak interactions U , which is independent
of the momentum. It has the resonance peak at frequency ω « 1.88, which increases
and sharpens for weaker interactions. The left plot shows the k-dependent term from
equation (III.61), which is independent of the interaction strength. The excitations
closer to the Fermi surface are more intense and vanish for |εk ´ εF| ě ω. Occupations
numbers with finite εk have an additional factor p1` 2

3
ε2kq, thus the states with k along

the field are amplified, |k ¨ eA|
2 „ ε2k. In a thermal ensemble, the excitations should

be independent of εk. This highlights the nonthermal character of this distribution
function.
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Figure 66: ñ
p2q
σkpωq from equation (III.61) for εk “ 0 (left) gives multiplied with the

scaling term (right) the prethermal plateau with respect to the external field

In this subsection, we learned that most details of the pump-pulse have a minor effect
on the prethermal state. We suggest to computed the momentum distribution of the

156



4 PHOTOINDUCED PRETHERMALIZATION

prethermal state by equations (III.60) or (III.62) as it captures the major terms. Its
numerical evaluation is easier than the real-time computations performed in subsection e)
and f). The driving frequency enters in a nontrivial fashion, and the field strength squared
times pulse duration scales the excitations. The pulse shape gives a shape factor of order
unity. The interaction strength expansion factorises the problem into a k-dependent
term and an g-dependent term, e.g., results depicted in figure 66. The resonance
presents an opportunity to create a highly nonthermal state in a weakly interacting
system. Driving at the resonance frequency generates a pronounced nonthermal ensemble
according to equation (III.62). The thermalization rate is slowed down for sufficiently
small interactions, as discussed in outlook subsection 6.a). Therefore, we propose to
photopump at resonance frequency to generate a nonthermal distribution function,
which will be stabilized for sufficiently small interactions.
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5 Summary for weakly interacting systems

Let us summarize the main insights from this chapter. First, the Dirac representation
gives directly the formal series expansion in interaction strength g. It can be applied
to any time-dependent expectation value for any nonequilibrium protocol. For the
interaction quench and the mode occupation numbers, it reproduces the established
expressions73,80,85 for the prethermalization plateau. Furthermore, we can study initially
interacting states if we prepend an adiabatic switching to the Hamiltonian. One main
result of this dissertation are the generalized prethermalization formulas in equations
(III.5) and (III.7).

We define the prethermalization regime as the time scale where the leading order
expansion gives an accurate result. The deviation increases with interaction strength
g and time t. Hence, the perturbative expansion is only applicable within a certain
time window, even for weakly interacting systems. The perturbative terms relax to a
constant value called prethermalization plateau for general systems and processes.

The Boltzmann equation45–47 governs the thermalization on a larger times scale. We
discuss it in the subsection 6.a) below. The dynamics can be approximated by a two-step
process for weakly interacting systems. First, one computes occupation numbers in the
prethermalization regime and then inserts them into the Boltzmann equation (III.67).
This leads to a relaxation to a Fermi distribution determined by the kinetic energy,
which is a constant of motion in the Boltzmann dynamics. Hence, the kinetic energy in
the prethermal steady state determines the eventual thermal distribution.

We assign the observables into two classes, whether the Opgq term in the pertur-
bative expansion vanishes or not. The observables with finite Opgq are called “first-order”
observables by us. The other ones are called “second-order” observables as Opg2q is the
leading order.

The prethermalization dynamics of first-order observables are qualitatively equal for
initially interacting and noninteracting states. Thus, the change in interaction strength
has the strongest the impact. Furthermore, the plateau is independent of the explicit
nonequilibrium protocol and relates to perturbative terms in equilibrium. Therefore, it
is very likely to encounter crossing points for fixed final and varying initial interaction
strength. These crossing points are expected in most first-order observables, but the
crossing time depends on the chosen observable and protocol. If the interaction is
treated nonperturbatively, then the crossing point distributes into a region. The region
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becomes sharper for weaker interactions and for shorter crossing times.

Second-order observables exhibit new features. First, the prethermalization dynamics are
computed by the summation of two terms. The dynamics concerning the noninteracting
state plus a second “mixing”-term for initially interacting states. This “mixing”-term
behaves similar to a first-order observable. Regarding the noninteracting state, the term
relaxes to a plateau value,73,80,84 grows logarithmic for low dimensional systems82,83 or
linearly for driven systems.89

Constants of motion for an interacting Hamiltonian are generated from the constants of
the free Hamiltonian, which we obtain by adiabatic transformations. The perturbative
evaluation is done by applying the series expansion in interaction strength. The prether-
malization plateaus after a nonequilibrium process are described by the generalized
Gibbs ensemble (GGE) constructed from these constants of motion. This was previously
established for the quench,85 and we generalized it to arbitrary nonequilibrium protocols
in subsection 2.c).

As an application, we considered the Hubbard model in infinite dimensions at half-filling,
as it is a generic and computational feasible system. For nonequilibrium protocols with
time-dependent interaction, only the density of states (d.o.s.) enters the computational
scheme. Our method computes efficiently for quenches,73,80,85 ramps,84 and periodically
driven systems.89 It has access to all times within the prethermal regime and can handle
initially interacting states. The dynamics are similar for initially interacting states as
for uncorrelated states. Furthermore, we derive the equations of motion in a more direct
fashion and reproduce previous results.

The occupation probabilities behave similarly for various ramps and d.o.s. . Occu-
pied states decrease, and initially unoccupied states increase during the ramp or quench.
Then, they relax with damped oscillations to their prethermalization plateau. For
different d.o.s. and observables, we find different relaxation laws. Generally, they decay
with t´3 or faster, as determined by the d.o.s. at the band edges. The quench plateau
value of the occupation numbers is twice the adiabatic value.73,80,85 Finite ramps connect
these two limits.84 States towards the band edges converge faster to the adiabatic limit
than states near the Fermi surface. Our calculations indicate that increasing ramping
time is the only available tool to prevent heating, while ramping more smoothly does not.

We observe two different regimes in a periodically driven system,89 determined by
the relation of the driving frequency to the bandwidth. The system relaxes to a prether-
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malization plateau with steady oscillations for fast driving. The observables increase
linearly, and no relaxation is predicted for slow driving. The critical driving frequency
is not affected by initial interactions. At a certain time, the linear growing observables
reach unphysical values. Our approximation breaks down at this point and marks the
definite end of the prethermalization regime.

In the last section, we computed the expectation values for the Hubbard model hit
by a homogeneous field pulse. Our electric field pulse scenario established several new
features. In some cases, the current relaxes to a finite plateau value. When we apply
an enveloping function to the pulse or linearize in field strength, the plateau vanishes.
The occupation numbers relax to steady nonthermal values. We evaluate the linear and
pump-probe response functions. If the delay between pump and probe pulse is short
p∆t « W´1q, then the probe response function is affected nontrivially by the pump pulse.
If the delay time is large p∆t " W´1q, then the diamagnetic conductivity is changed
due to the increased kinetic energy. In this setup, the measured conductivity of the
prethermal and thermalized states are identical. Including the higher-order terms should
lead to a different paramagnetic conductivity for the thermal and prethermal states as
both have different momentum distributions. Furthermore, we suggest pumping and
probing from different directions to detect the prethermal steady state in the probe
conductivity.

It is sufficient and more efficient to expand in the first few orders in electric field
strength. It is necessary to include at least second-order terms to obtain a finite shift
because linear response theory always predicts the return to the initial thermal value.
Our expansion in electric field strength indicates that the plateau values of kinetic energy
and occupation numbers scale linearly in duration and quadratic in field strength. The
change in kinetic energy determines the heating of the system. In the high-frequency
limit, the heating vanishes, and in the low-frequency limit, the heating becomes fre-
quency independent. The current is essentially linear in the electric field and vanishes
in the long-time limit. If we assume it as linear and set it equal to the classical current,
Maxwell’s equations relate the internal to the external electric field in frequency space.
This enables us to compute the dominating contributions to the prethermal state for
the external field. Electronic systems with weak interactions have a pronounced Drude
peak, which provides an opportunity to drive into a highly excited state. The weak
interparticle scattering slows down thermalization and increases the stability of the
prethermal state. Our method should be extended to arbitrary d.o.s. and electric-field
orientations. We expect the distinction into a high and low-frequency regime for a d.o.s.
with finite bandwidth. As for periodically driven interactions,89 we expect linear heating
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in the low-frequency regime and no linear heating in the high-frequency regime.

The prethermal and thermalization regime are described within the weak-correlations
approximation, which we discuss below in subsection 6.a). This approximation was com-
puted for the Hubbard model with infinite spatial dimensions74 and a one-dimensional
system.115,116 The kinetic equations simplify when formulated as local in time, as
discussed in subsection 6.b).
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6 Outlook: From prethermalization to thermalization

a) Derivation of the Boltzmann equation

As an outlook, we derive the Boltzmann equation for weakly interacting fermionic
systems. The Boltzmann equation describes the dynamics after the prethermal regime
as it thermalizes a nonthermal distribution function. We extract the thermalization time
scale during the derivation. We use the method developed her, but follow the major steps
found in previous work.45,46 It is possible to derive the Boltzmann equation within the
DMFT framework, which gives proper results even for strongly interacting systems.117

In one dimension, the Boltzmann equation captures the long-time thermalization if
there is a finite next-to-nearest neighbor hopping amplitude.118

We start the derivation with equation (III.4) and the particle occupation numbers
are given in the interaction picture by

xn̂νyt “ xn̂νytini
`

8
ÿ

n“2

pigqn
t
ż

tini

dt1 . . .

tn´1
ż

tini

dtnx
”

Ĥ1,Iptnq, . . .
”

Ĥ1,Ipt1q, n̂ν

ı

. . .
ı

ytini

“ xn̂νytini
´ g2

t
ż

tini

dt1

t1
ż

tini

dt2

8
ÿ

n“0

pigqn
t2
ż

tini

dτ1 . . .

τn´1
ż

tini

dτn

ˆ x

”

Ĥ1,Ipτnq, . . .
”

Ĥ1,Ipτ1q,
”

Ĥ1,Ipt2q,
”

Ĥ1,Ipt1q, n̂ν

ııı

. . .
ı

ytini

“ xn̂νytini
´ g2

t
ż

tini

dt1

t1
ż

tini

dt2 x
”

Ĥ1,Ipt2q,
”

Ĥ1,Ipt1q, n̂ν

ıı

yt2 . (III.63)

If n̂ν commutes with the unperturbed Hamiltonian Ĥ0 and the initial state is an
eigenstate of n̂ν and Ĥ0, then the first-order term vanishes and equation (III.63) is
applicable. Now, we assume that the expectation value on the right side is evaluated by
an uncorrelated state, however all occupation numbers are computed self-consistently.
Then, it becomes a function of all xn̂αyt2 . We call this approximation weak-correlation
approximation,

x

”

Ĥ1,Ipt2q,
”

Ĥ1,Ipt1q, n̂ν

ıı

yt2 ÝÑ x

”

Ĥ1,Ipt2q,
”

Ĥ1,Ipt1q, n̂ν

ıı

ytini

ˇ

ˇ

ˇ

xn̂αytiniÑxn̂αyt2

. (III.64)
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6 OUTLOOK: FROM PRETHERMALIZATION TO THERMALIZATION

A strength of this approximation is that it includes arbitrary orders of interaction
strength g and computes all single-particle observables self-consistently. A drawback is
that a complicated Volterra integrodifferential equation must be solved

Bxn̂νyt
Bt

“ ´g2

t
ż

tini

dt2 x
”

Ĥ1,Ipt2q,
”

Ĥ1,Iptq, n̂ν

ıı

ytini

ˇ

ˇ

ˇ

xn̂αytiniÑxn̂αyt2

. (III.65)

The numerical evaluation of (III.65) was done for the infinite-dimensional Hubbard
model74 and a one-dimensional model.115,116 To derive the Boltzmann equation, we take
a few additional steps. First, the Hamiltonian stays constant after a certain point in
time, which we set as time zero,

Ĥpt ą 0q “ Ĥ0 ` V̂ .

Second, the time evolution up to time zero gives corrections of Opg2q,

Bxn̂νyt
Bt

“ ´g2

t
ż

0

dt2 x
”

V̂ ,
”

V̂Ipt´ t2q, n̂ν

ıı

ytini

ˇ

ˇ

ˇ

xn̂αytiniÑxn̂αyt2

`Opg2t0q .

The third step is to rescale the time to τ “ tg2 and assume the existence of an analytic
function Nνpτq “ xn̂νy τ

g2
for small g,

BNνpτq

Bτ
“ ´

τ
g2
ż

0

dt2 x

„

V̂ ,

„

V̂Ip
τ

g2
´ t2q, n̂ν



ytini

ˇ

ˇ

ˇ

ˇ

xn̂αytiniÑxn̂αyt2

`Opg2
q .

Next, we partially integrate,
τ
g2
ż

0

dt2 x

„

V̂ ,

„

V̂Ip
τ

g2
´ t2q, n̂ν



ytini

ˇ

ˇ

ˇ

ˇ

xn̂αytiniÑxn̂αyt2

“

τ
g2
ż

0

dt2 x

„

V̂ ,

„

V̂Ip
τ

g2
´ t2q, n̂ν



ytini

ˇ

ˇ

ˇ

ˇ

xn̂αytiniÑNαpτq

´

τ
g2
ż

0

dt1

t1
ż

0

dt2
B

Bt1
x

„

V̂ ,

„

V̂Ip
τ

g2
´ t2q, n̂ν



ytini

ˇ

ˇ

ˇ

ˇ

xn̂αytiniÑxn̂αyt1
loooooooooooooooooooooooooooomoooooooooooooooooooooooooooon

“Opg2q

.
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The second term is Opg2q because it is linear in the time derivative of the occupation
numbers. The expectation value is real and thus it is symmetric in t2. We symmetrize
the time integration t2 and take the limit g Ñ 0,

lim
gÑ0

BNνpτq

Bτ
“ ´

1

2

8
ż

´8

dt2 x
”

V̂ ,
”

V̂Ipt2q, n̂ν

ıı

ytini

ˇ

ˇ

ˇ

xn̂αytiniÑNαpτq
. (III.66)

Up to now, we have not specified a certain model. Thus, we can interpret equation
(III.66) as a generalization of the Boltzmann equation. In this derivation, we copied
the essential steps of previous work,45,46,74 but skipped the initial step of assuming a
specific Hamiltonian. Equation (III.66) governs the dynamics on the time scale t “ τ

g2 .
Even systems with infinitesimal small interactions g can thus exhibit dynamics beyond
the hopping time scale.

The final step is to insert a free particle Hamiltonian for Ĥ0 and a two-particle in-
teraction for V̂ ,

Ĥ0 “
ÿ

ν

ενn̂ν , V̂ “
ÿ

α,β,γ,δ

Vαβγδ ĉ
:
αĉ
:

β ĉγ ĉδ .

Then, the expectation value for an uncorrelated ensemble ρ̂0 is

x

”

V̂ ,
”

V̂Iptq, n̂ν

ıı

y0 “
ÿ

βγδ

|Vνβγδ|
2 cosptpεν ` εβ ´ εγ ´ εδqq

ˆ

´

xn̂νy0xn̂βy0p1´ xn̂γy0qp1´ xn̂δy0q

´ xn̂γy0xn̂δy0p1´ xn̂νy0qp1´ xn̂βy0q
¯

.

The step by step computation of the expectation value is done in subsection 3.b). The
time integration in (III.66) transforms the cosine function into a delta function,

lim
gÑ0

BNνpτq

Bτ
“ ´π

ÿ

β,γ,δ

|Vνβγδ|
2δpεν ` εβ ´ εγ ´ εδq

ˆ

´

NνpτqNβpτqp1´Nγpτqqp1´Nδpτqq

´NγpτqNδpτqp1´Nνpτqqp1´Nβpτqq
¯

“ π Jn̂ν pε “ 0q|
xn̂αytiniÑNαpτq

. (III.67)

Equation (III.67) is the Boltzmann equation45,46 and Jn̂ν pεq was defined in equation
(III.6). The Boltzmann equation describes a two-particle scattering process in which
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two occupied particles scatter into two unoccupied states. The delta function conserves
energy for the scattering processes, and the interaction potential |Vνβγδ|

2 conserves
quantum numbers, e.g., momentum for isotropic interactions. Thus, the Boltzmann
equation redistributes the occupation numbers until they reach a steady state. It is
established that the Fermi distribution governs the occupation numbers for the steady
state,45,73,74

Nνpτq “
1

1` e´βpεν´µq
.

The Fermi distribution is the thermal distribution of an noninteracting system. Therefore,
the Boltzmann equation thermalizes the distribution for g Ñ 0. Furthermore, the
Boltzmann equation conserves the kinetic energy,73,74

lim
gÑ0

BxĤ0yτ

Bτ
“ ´π

ÿ

α,β,γ,δ

εα|Vαβγδ|
2δpεα ` εβ ´ εγ ´ εδq

ˆ

´

NαpτqNβpτqp1´Nγpτqqp1´Nδpτqq

´NγpτqNδpτqp1´Nαpτqqp1´Nβpτqq
¯

“ 0 .

The total particle number is conserved in the weak-correlation approximation and
therefore in the Boltzmann equation as well. When we compute the time evolution with
respect to the Boltzmann equation (III.67), then we can predict the long-time limit
with these two constants. First, we compute the kinetic energy at the initial time. In
the long-time limit, it will converge to a Fermi distribution. The parameters inverse
temperature β and the chemical potential µ are determined from these two conserved
quantities,

xN̂y8 “
ÿ

α

1

1` e´βpεα´µq
, xĤ0y8 “

ÿ

α

εα
1` e´βpεα´µq

.

The kinetic energy has to lie below the infinite temperature ensemble. Otherwise, no
appropriate Fermi distribution exists.

Weak interaction quenches are fully captured by the following two-step method.73,74

First, the occupation numbers are computed by the leading-order expansion during the
prethermal regime. Second, we insert the occupation numbers of the prethermal plateau
predicted from equation (III.5) at τ “ 0, and the Boltzmann equation computes the
thermalization dynamics. In figure 67, we display an example of how the Boltzmann
equation redistributes the occupation numbers. The main feature is the closing of the
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gap at the Fermi energy.

-0.5 0.5
ϵ

0.2

0.4

0.6

0.8

1.0

n

τ=0

τ=5

τ=∞

Figure 67: Evolution with Boltzmann equation for half-filled Hubbard model with infinite
spatial dimension and semi-elliptic d.o.s. starting from the quench prethermalization
plateau with U “ 1

When the instantaneous occupation numbers are further away from the Fermi distri-
bution, then the redistribution due the Boltzmann equation is more rapid. Therefore,
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6 OUTLOOK: FROM PRETHERMALIZATION TO THERMALIZATION

this scheme predicts faster thermalization for stronger interaction quenches. In the
small U and late τ regime, the Fermi gap closes exponentially ∆nFptq9 exppγFtq with
γF “ OpU4q.74 This method gives unphysical results when the interaction is larger than
gcrit. We determine gcrit as the interaction strength, when the kinetic energy at τ “ 0 is
equal to that of the infinite temperature ensemble,

E0pT “ 8q “ E0pt “ 0q ` g2
critE

p2q
kinpt “ 8q . (III.68)

DMFT found at Udyn
c “ 3.2119 the fastest thermalization after an interaction quench

away from the uncorrelated ground state. For stronger quenches, collapse-and-revival
oscillations characterize the dynamics and the gap at the Fermi surface closes at later
times.119 ¡Therefore, Udyn

c marks the distinction point between two qualitatively different
regimes of weak and strong interaction quenches. Equation (III.68) gives Ucrit “ 3.189
for this problem. The agreement of Udyn

c and Ucrit is surprisingly good. Therefore, we
propose Ucrit as an approximation to Udyn

c .

b) Local in time formulation

In this outlook, we reformulate the weak-correlation approximation local in time. At the
end of this subsection, we point out the benefits of the reformulation for future projects.
Our general idea is to consider other of self-consistent quantities. We start from the
equations of motions (III.63), which was deduced in the previous subsection a). It is
free of approximations, and the new quantities are

Ñνpt, εq “ ´g
2

8
ż

´8

dτ

2π
e´iεpt´τq

t
ż

tini

dt2x
”

Ĥ1,Ipt2q,
”

Ĥ1,Ipτq, n̂ν

ıı

yt2 .

They are related to the time-derivative of the occupation numbers

ż

dε Ñνpt, εq “ ´g
2

t
ż

tini

dt2x
”

Ĥ1,Ipt2q,
”

Ĥ1,Iptq, n̂ν

ıı

yt2 “
Bxn̂νyt
Bt

.

They are initially zero and follow the differential equation,

BÑνpt, εq

Bt
“ ´iεÑνpt, εq ´ g

2

8
ż

´8

dτ

2π
e´iεpt´τqx

”

Ĥ1,Iptq,
”

Ĥ1,Ipτq, n̂ν

ıı

yt .

Now, we apply the weak-correlation approximation as in equation (III.64). It replaces the
expectation value of the exact correlated state by a time-dependent uncorrelated state.
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III PRETHERMALIZATION INDUCED BY WEAK INTERACTIONS

The new equations of motion are local in time. We depict them for a time-independent
interaction pĤ1ptq Ñ V̂ q,

BÑνpt, εq

Bt
“ ´iεÑνpt, εq ` g

2 Jn̂ν pεq|xn̂αytiniÑxn̂αyt
,

Jn̂ν pεq “

8
ż

´8

dτ

2π
e´iετx

”

V̂ ,
”

V̂Ipτq, n̂ν

ıı

ytini
,

Bxn̂νyt
Bt

“

ż

dε Ñνpt, εq . (III.69)

If we compute the time-dependent interaction expectation value as

xV̂ yt “ xV̂ ytini
` ig

t
ż

tini

dτ x
”

V̂Ipτq, V̂Iptq
ı

ytini

ˇ

ˇ

ˇ

xn̂αytiniÑxn̂αyτ
,

then the energy expectation value is constant in time,

BxĤ0yt

Bt
` g

BxV̂ yt
Bt

“ 0 .

The computation in the weak-correlation approximation can be executed in two ways.
The first method is the evaluation of the Volterra integrodifferential equation (III.65).
For times shortly after the uncorrelated state, we expect equation (III.65) to be efficient.
With increasing time, the computational cost increases. The new second method is to
evaluate the integrodifferential equation (III.69). For later times, we expect our new
formalism to outperform the old one as the computational cost stays constant in time.

Furthermore, we may be able to find equilibrium “ensembles” in the weak-correlation
approximation. These ensembles are described by a set of xn̂νyt and Ñνpt, εq which
have Btxn̂νyt “ 0. In the limit of g Ñ 0, these ensembles are governed by the Fermi
distribution as equation (III.69) becomes the Boltzmann equation. Thus, they are equal
to the thermal ensembles of the noninteracting system. For a finite g, we expect to
obtain ensembles, which resemble thermal ensembles of a weakly correlated system.

As a future project, we propose to study equation (III.69) for the infinite-dimensional
Hubbard model in equilibrium and nonequilibrium. The local-in-time formulation should
be help to include initially interacting states, ramps, and electric field pulses.
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IV Conclusion

We investigated a variety of different nonequilibrium protocols for systems close to
an integrable point. We assumed a weak interaction strength g, which broke the in-
tegrability of the system. We investigated the expectation values of certain operators
which correspond to physical observables. We explicitly computed the first nontrivial
contribution from the expansion in g and predicted relaxation to a steady state, which
is nonthermal in general. The further relaxation to the thermal state is not described
by this method, but can be calculated self-consistently as discussed in subsection III.6.a).

We evaluated different terms in g depending on the operator and the nonequilibrium
protocol, namely the zeroth-, first- or second-order terms. The different orders had
distinct features, and thus we categorized the operators into different classes, resulting
in zeroth-, first- or second-order observables. Generally, the classification of observable
changes with the kind of nonequilibrium protocol and the system under investigation.
For example, in chapter II, we computed the local density for a locally perturbed system.
This was a zeroth-order observable. On the other hand, the double occupation was a
first-order observable for the spatially homogeneous perturbations in chapter III. There,
the mode occupation numbers were second-order observables.

In chapter II, we developed an efficient formalism to compute the Friedel oscillations after
quenching the potential energy of a single site. We treated the model as noninteracting
because we investigated a zeroth-order observable. The dynamics were fully determined
by the local Green function of the initial translationally invariant system. When we
represented the lattice in the shell-symmetric basis, the problem became effectively
one-dimensional. If the impurity strength exceed a critical value a localized eigenstate
emerged. We computed this threshold for the Bethe and the hyper-cubic lattice. It
was finite for higher dimensional systems and infinitesimally small for the simple chain
and the square lattice. Hence, in these low-dimensional systems, every finite impurity
potential induced a localized state. This is a fundamental difference between a low and
a high-dimensional system. The single-particle states showed steady oscillations in the
presence of the localized state, but canceled each other out for a many-particle state.
Then, the density relaxed to a constant value, captured by a generalized Gibbs ensemble
(GGE). If there was no localized eigenstate, the GGE was equal to the zero-temperature
ensemble, and direct thermalization was observed. In absence of the localized state,
there was an additional conservation law, and thermalization in a reduced Hilbert space
was observed. We termed this phenomenon generalized thermalization.38,72 We observed
an exact agreement of GGE and the long-time limit for the thermodynamic limit. The
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deviation between GGE and long-time limit decreases for finite systems with their
size.12,13,38,72

In chapter III, we investigated global homogeneous perturbations. There, the local
density remained constant in time. Other local observables, e.g., the double occupation,
were affected due to the local interactions. The first-order term of the mode occupation
number vanished, and we classified them as second-order observables. The first-order
observables’ prethermalization plateau solely depended on the final Hamiltonian and was
equal to equilibrium perturbation theory. The plateau value for second-order observables
depended on the protocol. For the quench, it is twice the equilibrium correction.37,73,74

The finite ramping values lay between the quench value and the value of adiabatic
switching, which is equal to the equilibrium correction. Generally, the plateau value
is described by a GGE, and the constants of motion can be constructed by adiabatic
dressing as discussed in subsection III.2.b).

We computed the expectation values for the Hubbard model in infinite spatial di-
mensions. There, the momentum conservation simplifies, and the problem is feasible but
nonintegrable. Our equations of motions are more general than in previous work.73,80,84,85

In addition, we appended an optional adiabatic switching process, which generalized
the method to interacting initial states. Our results for quenches, ramps, and periodic
driving were computed efficiently and not restricted to stroboscopic times. Furthermore,
we successfully studied an electric field pulse hits a weakly interacting Hubbard system.
The interaction strength was constant, and the eigenenergies of the noninteracting
Hamiltonian changed due to the electric field. This problem was more challenging to
evaluate, but allowed to describe the field nonperturbatively.

If we add small interactions, the system shifts away from the noninteracting inte-
grable point, and relaxation to a thermal ensemble is expected. A mean-field description
was derived in reference75 predicting thermalization at the time scale of τ “ t{g for
local observables. On the other hand, mode occupation numbers as nonlocal observables
thermalize due to quasiparticle scattering on the time scale τ “ t{g2.45–47 Thus, the
thermalization time scale should strongly depend on the observable.

There are different approaches to generate a stationary prethermal state. The two
aspects of interest are the deviation from the thermal state on the one hand and its
lifetime on the other hand. We may extend the thermalization time scale by decreasing
g, so that the lifetime of the prethermalization plateau is prolonged. We found that the
scaling is more favorable for global perturbations than for local ones. The deviation is
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Opg0q for local and Opg2q for global perturbations. We conclude that local quenches
should be as close to the integrable point as possible. This increases the lifetime, and
the deviation from the thermal is not affected. For global perturbations, an intermediate
g should be chosen because the impact must be strong enough to be detectable and the
lifetime long enough to apply a measuring procedure. However, resonant photopumping
can bypass the Opg2q scaling law for global perturbations. The resonance peak sharpens
and heightens for weaker interactions. If we pump at the resonance frequency of the
Drude peak, then the momentum distribution deviates more from its equilibrium value.
The main obstacle is that the driving rate is multiplied by the small factor E2e2a2

~2ω2 , which
emerges from the second-order expansion in field strength.

We see two general directions for further progress. The first is the engineering of
certain desirable features in prethermal states. This could elevate prethermal states
to promising candidates for technological applications. The other is to further develop
theoretical methods. More refined methods should cover the prethermalization and
the thermalization time scale. This allows us to investigate the dynamic transition
between these two regimes. We suggest focusing on the weak-correlation approximation
to achieve this, which was introduced in subsection III.6.a). This approximation includes
self-consistently arbitrary orders in interaction strength and continuously connects the
two regimes of prethermalization and thermalization.

In conclusion, we presented a combination of analytical and numerical methods for the
prethermal regime and applied it to the Hubbard model for various nonequilibrium
protocols. we developed a general and efficient method, addressed several essential
questions, and suggested further perspectives, so that this dissertation may serve as a
comprehensive guide on the topic of prethermalization.
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V Appendix

1 Evaluation of a3pbq and a4pbq

In this appendix, we compute analytically the functions a3pbq and a4pbq. They are first
defined in equation (III.17). We introduce the generalized function

a3pα, βq “

8
ż

0

dx

8
ż

0

dy

8
ż

0

dz δpα ´ px` y ` zqqδpβ ´ px2
` y2

` z2
qq .

We compute a4pbq by integrating over a3pα, βq,

a4pβq “

8
ż

0

dx a3p1´ x, β ´ x
2
q . (V.1)

The easiest way to compute a3pα, βq is to calculate the cut between a triangle with
corner points pα, 0, 0q, p0, α, 0q and p0, 0, αq with a sphere of radius

?
β at the origin.

We multiply the result by p2
?

3βq´1. The factor originates from the integration over
the delta functions δpα ´ px` y ` zqq and δpβ ´ px2 ` y2 ` z2qq,

a3pα, βq “ ΘpαqΘpα2
´ βqΘp3β ´ α2

q
?

3

˜

π

3
´Θp2β ´ α2

qarccos

˜

α
a

6β ´ 2α2

¸¸

.

We obtain a4pbq by evaluating the integral in equation (V.1). The arccos function we
deform into a root by partial integration,

d

dx
arccospxq “

´1
?

1´ x2
for ´ 1 ă x ă 1 .

After respective shifts in the integration variable x, two types of integrals remain. They
are found in a table of integrals,120

R “ a` bx` cx2 ,

∆ “ 4ac´ b2 ,
ż

dx
?
R
“
´1
?
´c

arcsin

ˆ

2cx` b
?
´∆

˙

for rc ă 0,∆ ă 0s ,

ż

dx

x
?
R
“

1
?
´a

arcsin

ˆ

2a` bx

x
?
´∆

˙

for ra ă 0,∆ ă 0s .
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Further simplifications lead to the solution,

a4pxq “

$

’

’

’

’

’

&

’

’

’

’

’

%

π
b

x´ 1
4

for 1
4
ă x ă 1

3

π?
3
´ π

b

x´ 1
4

for 1
3
ă x ă 1

2

´ π
2
?

3
´ π

b

x´ 1
4
` a4hpxq for 1

2
ă x ă 1

0 else

,

a4hpxq “
?

3 arcsin

ˆ

1
?

6x´ 2

˙

` 3

c

x´
1

4
arcsin

ˆ

?
1´ 6x` 8x2

3x´ 1

˙

.

a4pbq is depicted together with a3pbq in figure 68. The functions anpbq are nonzero only
in the interval from 1

n
to 1. They have positive values there. Furthermore, they are

nonanalytic at the points b “ 1
m

with integers 1 ď m ď n.

0.4 0.6 0.8 1.0 1.2
b

0.5

1.0

1.5

a4(b)

a3(b)

Figure 68: Graphical representation of a4pbq and a3pbq
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3 G. Biroli, C. Kollath, and A. M. Läuchli, Effect of Rare Fluctuations on the Ther-
malization of Isolated Quantum Systems, Phys. Rev. Lett. 105, 250401 (2010).

4 P. Calabrese, F. H. L. Essler, G. Mussardo, A. D. Luca, M. Fagotti, J. Cardy, M. A.
Cazalilla, M.-C. Chung, D. Bernard, B. Doyon, J.-S. Caux, L. Vidmar, M. Rigol,
R. Vasseur, J. E. Moore, T. Langen, T. Gasenzer, J. Schmiedmayer, E. Ilievski,
M. Medenjak, T. Prosen, and L. Zadnik, Special issue on Quantum Integrability in
Out of Equilibrium Systems, Journal of Statistical Mechanics: Theory and Experiment
2016, 064001 (2016).

5 M. Srednicki, Chaos and quantum thermalization, Phys. Rev. E 50, 888 (1994).

6 J. M. Deutsch, Quantum statistical mechanics in a closed system, Phys. Rev. A 43,
2046 (1991).

7 M. Rigol and M. Srednicki, Alternatives to Eigenstate Thermalization, Phys. Rev.
Lett. 108, 110601 (2012).

8 M. Rigol, V. Dunjko, and M. Olshanii, Thermalization and its mechanism for generic
isolated quantum systems, Nature 452, 854 (2008).

9 M. Srednicki, The approach to thermal equilibrium in quantized chaotic systems,
Journal of Physics A: Mathematical and General 32, 1163 (1999).

10 E. T. Jaynes, Information Theory and Statistical Mechanics, Phys. Rev. 106, 620
(1957).

11 R. Balian, From Microphysics to Macrophysics: Methods and Applications of Statis-
tical Physics, volume Vol.1, Springer, Berlin, 1991.

12 M. Rigol, A. Muramatsu, and M. Olshanii, Hard-core bosons on optical superlattices:
Dynamics and relaxation in the superfluid and insulating regimes, Phys. Rev. A 74,
053616 (2006).

175



REFERENCES

13 M. Rigol, V. Dunjko, V. Yurovsky, and M. Olshanii, Relaxation in a Completely
Integrable Many-Body Quantum System: An Ab Initio Study of the Dynamics of the
Highly Excited States of 1D Lattice Hard-Core Bosons, Phys. Rev. Lett. 98, 050405
(2007).

14 H. Aoki, N. Tsuji, M. Eckstein, M. Kollar, T. Oka, and P. Werner, Nonequilibrium
dynamical mean-field theory and its applications, Rev. Mod. Phys. 86, 779 (2014).

15 L. E. Sadler, J. M. Higbie, S. R. Leslie, M. Vengalattore, and D. M. Stamper-Kurn,
Spontaneous symmetry breaking in a quenched ferromagnetic spinor Bose-Einstein
condensate, Nature 443, 312 (2006).
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