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1 Motivation

In this master’s thesis the Gutzwiller wave function (GWF) for a one- and two-
dimensional lattice in equilibrium is investigated. The GWF is a variational wave
function (VWF) for the Hubbard model, which is the most basic model for correlated
electrons in a lattice. By studying the Hubbard model we aim to understand the
effects of strongly correlated electrons in real materials. The strong correlations of
the electrons result in extraordinary properties of some materials like high temper-
ature superconductors or heavy fermions. The study of the Hubbard model is the
foundation for a proper theoretical description of correlated materials.

The first option to investigate the Hubbard model is to do a perturbation the-
ory in a small parameter, but in many cases there does not exist a small parameter.
Another option is to use a VWF as an educated guess for the ground state. In this
thesis we choose the second option, but we must be aware of the fact that the quality
of the resulting expectation values strongly depend on the choice of the VWF. The
VWF reduces the infinite-dimensional Fock space of all many-body wave functions
to the variational parameter space of the VWF.

Evaluating the expectation values of a correlated VWF like the GWF is still a
quantum many-body problem, which in general cannot be solved analytically. We
aim to evaluate the expectation values numerically with sufficient accuracy by using
a diagrammatic expansion in a small parameter. The advantage of a diagrammatic
expansion for a VWF compared to diagrammatic expansion for Green functions is
that the correlation function has no time dependence. Hence the problem is reduced
by one dimension, the dimension of time, but the dependence on real space still
remains.

We use two different diagrammatic expansions. The first one starts from the Fermi
sea and was developed by Metzner and Vollhardt [1] [2] [3]. The second one is very
similar, but it is an expansion around the exact solution of the GWF in infinite spatial
dimensions and was developed by Gebhard [4]. First of all these two expansions will
be applied to an one-dimensional chain of equal lattice sites with nearest neighbor
hopping of infinite length. For this one-dimensional system an analytic solution
for the GWF is available. By comparing the analytic result with the two different
expansions the quality and the validity in parameter space of the two expansions
can be examined.

The consecutive step is to apply the diagrammatic expansions on a two-dimensional
square lattice of equal sites with just nearest neighbor hopping. For this lattice there
does not exist an analytic solution and our purpose is to calculate numerically with
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1 Motivation

high accuracy expectation values with respect to the GWF. The quantitative validity
in parameter space we deduce from the validity in parameter space in one dimension
and from an error estimation procedure.

In this thesis we study only the GWF, but all techniques and procedures can
also be applied for a class of generalized GWFs, which use other uncorrelated wave
functions than the Fermi sea.
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2 Analytic foundation

2.1 Hubbard model
In the 1960s Gutzwiller proposed an Hamiltonian Ĥ to describe the electrons in a
solid including correlation between the electrons, which is now called the Hubbard
Hamiltonian [5][6][7]. The Hamiltonian consists out of a single-particle operator, the
kinetic energy of the electrons T̂ , and of a two-particle operator, the potential energy
between two electrons V̂ ,

Ĥ “ T̂ ` V̂ . (2.1)

On each lattice site i of the solid an electron with spin σ is allowed to occupy the
state |Φiσy, which is localized at the site i. For a fixed particle number N the basis
of the Hilbert space are the N ˆN Slater determinants of the states |Φiσy. To avoid
calculating with the explicit wave functions |Φiσy we expand the Hilbert space to the
Fock space. This is the direct sum of Hilbert spaces with particle number N varying
N from zero to infinity. Then in the Fock space we are allowed to use the creation
and annihilation operators ĉ:iσ and ĉiσ of second quantization and the kinetic energy
operator can be written as:

T̂ “
ÿ

i,j

ÿ

σ“äç

´tij ĉ
:
iσ ĉjσ with tij “

ż

Φ˚iσprq
ˆ

~2

2m∆
˙

Φjσprq dr (2.2)

In the formula above we use two assumptions, first that tij is spin-independent and
second that the states xr|Φiσy ” Φiσprq are a product of a real-space function and a
spin function and the spin functions of different spins are orthogonal to each other.
The potential energy in second quantization is:

V̂ “
ÿ

i,j,k,l

ÿ

σ,σ1

Vijkl ĉ
:
iσ ĉ

:

jσ1 ĉkσ1 ĉlσ . (2.3)

The symbol Vijkl is an abbreviation for the integral

Vijkl “

ż ż

Φ˚iσprqΦ˚jσ1pr1q
ˆ

e2{4πε0

|r´ r1|

˙

Φkσ1pr1qΦlσprq dr dr1 . (2.4)

The idea of the Hubbard model is to neglect all the parameters Vijkl except for the
ones with the highest magnitude. If the wave functions Φiσprq are localized at their
sites i, then naturally Viiii ” Ui has the highest magnitude of all Vijkl. Localization
implies that |Φiσprq|2 decreases fast with |r´ ri| compared to the lattice constant.
The potential energy V̂ simplifies to

V̂ “
ÿ

i,j,k,l

ÿ

σ,σ1

Uiδi,lδj,kδi,j ĉ
:
iσ ĉ

:

jσ1 ĉkσ1 ĉlσ “
ÿ

i

Uiĉ
:

iÒĉiÒĉ
:

iÓĉkÓ “
ÿ

i

Uin̂iÒn̂iÓ , (2.5)
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2 Analytic foundation

and the Hubbard Hamiltonian is

Ĥ “
ÿ

i,j

ÿ

σ“Ö

´tij ĉ
:
iσ ĉjσ `

ÿ

i

Uin̂iÒn̂iÓ . (2.6)

If the lattice is translational invariant, then Ui becomes independent of the lattice
site (Ui ” U) and the kinetic energy can be diagonalized by Fourier transformation,

ĉkσ “
1
?
L

ÿ

j

eik¨rj ĉjσ , tij ÝÑ ti´j , εk “ ´
ÿ

δ

tδe´ik¨rδ . (2.7)

The Hubbard Hamiltonian for the translational invariant case is

Ĥ “
ÿ

k

ÿ

σ“Ö

εkĉ
:

kσ ĉkσ ` U
ÿ

i

n̂iÒn̂iÓ . (2.8)

During the rest of this thesis we use the tight-binding Hamiltonian as the kinetic
energy part of the translational invariant Hubbard Hamiltonian. In the tight-binding
approximation electrons can only hop from one site to the nearest neighboring site,
thus the hopping amplitudes tij for nearest neighbors are finite and the rest are
zero. This is reasonable in the case of localized wave functions, because the nearest
neighbor amplitudes tij have the highest magnitude of all tij. The on-site terms tii
just act as a chemical potential and therefore can be neglected.

Further we restrict ourselves in this thesis to an infinite equally spaced one-dimensional
chain of sites and to an infinite two-dimensional square lattice. In both cases the
distance to each nearest neighbor is constant and so all tij for nearest neighbors
are set to the same finite value t. For the tight-binding Hamiltonian the dispersion
relation εk is

εk “ ´2t
d
ÿ

n“1
cospknq (2.9)

and depends only on the hopping parameter t and the dimension d. The advantage
of the tight-binding model with Hubbard interaction is that it contains only two
parameters t and U . So in order to capture all physics of this model we need to vary
only one parameter, the ratio of U to t.
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2.2 Gutzwiller wave function (GWF)

2.2 Gutzwiller wave function (GWF)
Gutzwiller not only proposed the Hubbard Hamiltonian, he also investigated it. For
zero Hubbard interaction U it describes non-interacting fermions. The exact solution
to non-interacting fermions is the Fermi sea |Ψ0y filled up to the Fermi energy εF,

|Ψ0y “
ź

εkăεF

ĉ:kÒĉ
:

kÓ|0y . (2.10)

Increasing U from zero to a finite value the exact solution of the system evolves from
the Fermi sea to a new state. Because U penalizes double occupations, the double
occupation of the new state is reduced compared to the Fermi sea. Gutzwiller created
a variational wave function, now called the Gutzwiller wave function, to approximate
the exact ground state of the system. Gutzwiller applied an operator called the
Gutzwiller correlator to the Fermi sea, that projects out the doubly occupied states
in |Ψ0y controlled by the Gutzwiller parameter g,

|Ψgy “ g

ř

i

n̂iÒn̂iÓ
|Ψ0y (2.11)

“
ź

i

gn̂iÒn̂iÓ |Ψ0y (2.12)

“
ź

i

r1` n̂iÒn̂iÓpg ´ 1qs|Ψ0y . (2.13)

For g “ 1 the GWF |Ψgy becomes the Fermi sea and for g “ 0 it has no double
occupation for half or less filling. For this reason |Ψg“1y is the exact solution for
U “ 0 and |Ψg“0y should be a good approximation for U Ñ 8. Therefore the
physical region for the variational parameter g is between zero and one.

Hence the Fermi sea |Ψ0y is normalized, the GWF |Ψgy is not normalized any-
more and expectation values need a normalization factor. As for any VWF the
energy expectation value with respect to the GWF xĤyg is a strict upper bound for
the ground-state energy E0.

E0 “ xΩ|Ĥ|Ωy ď min
gPr0,1s

xĤyg with xĤyg “
xΨg|Ĥ|Ψgy

xΨg|Ψgy
(2.14)

The GWF is a correlated many-body state and expectation values with respect to
a correlated many-body state cannot be calculated analytically in general. Exact
evaluations of the expectation values with respect to the GWF are only in one spatial
and infinite spatial dimensions available. During the following sections will be a
discussion of two diagrammatic expansions for the GWF in finite spatial dimensions.
In the next section the diagrammatic expansion by Metzner and Vollhardt will be
discussed and in the section after that Gebhard’s diagrammatic expansion will be
explained.
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2 Analytic foundation

2.3 Metzner and Vollhardt’s diagrammatic expansion in powers
of g2 ´ 1

In this section the diagrammatic expansion by Metzner and Vollhardt [1][2][3] for
the generalized GWFs is presented. The aim of this expansion is to calculate the
expectation values of the single-particle density operator and the double occupation
operator. The general steps in the procedure are first an expansion in the parameter
pg2 ´ 1q, second redefining the contractions to avoid restrictions in the sums, third
applying Wick’s theorem to write the terms as sums of diagrams, fourth using
linked-cluster theorem to get rid of vacuum diagrams, fifth defining a self-energy and
the sixth and seventh steps are using Dyson equation and dressed lines to get an
expansion solely in skeleton diagrams for the self-energy.

The procedures in this section are not restricted to the translational invariant Hub-
bard model nor the GWF. Instead all calculations are also valid for the translational
non-invariant Hubbard model and for generalized GWFs. In the generalized GWFs
the Fermi sea of the GWF is replaced by an arbitrary product-state of single-particle
wave functions. The Gutzwiller correlator is left unchanged.

The energy expectation value with respect to the GWF xĤyg is an upper bound
for the energy of the ground-state. xĤyg splits into the expectation values of the
single-particle density operator xĉ:iσ ĉjσyg ” Pσij and double occupation operator
xn̂iÒn̂iÓyg ” xD̂iyg for the Hubbard model.

xĤyg “ ´
ÿ

i,j

ÿ

σ“Ö

tijxĉ
:
iσ ĉjσyg `

ÿ

i

UixD̂iyg (2.15)

Because the GWF is not normalized the expectation value for an arbitrary operator
Â is

xÂyg “
xΨg|Â|Ψgy

xΨg|Ψgy
. (2.16)

Expansion in the small parameter g2 ´ 1

Here the first step is to bring the terms

xΨg|Ψgy , xΨg|D̂i|Ψgy , xΨg|n̂iσ|Ψgy and xΨg|ĉ
:
iσ ĉjσ|Ψgy for i ‰ j (2.17)
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in the form of an series in a small parameter. We begin with

xΨg|Ψgy “ xΨ0|g

ř

i

D̂i
g

ř

j

D̂j

|Ψ0y (2.18)

“xΨ0|
`

g2˘
ř

i

D̂i
|Ψ0y (2.19)

“xΨ0|
ź

i

r1` D̂ipg
2
´ 1qs|Ψ0y . (2.20)

The product over the infinite lattice i is multiplied out and we obtain a series in
pg2 ´ 1q,

xΨg|Ψgy “

8
ÿ

m“0

pg2 ´ 1qm
m!

ÿ

f1...fm

1

xΨ0|D̂f1 . . . D̂fm |Ψ0y . (2.21)

The prime at the sum indicates that it is to be taken only over pairwise different fn
(fn1 ‰ fn2 for n1 ‰ n2). For a finite lattice the identity

L
ź

i“1
r1` D̂ipg

2
´ 1qs “

L
ÿ

m“0

pg2 ´ 1qm
m!

L
ÿ

f1,...,fm“1

1

D̂f1 . . . D̂fm (2.22)

can easily be shown by induction over the number of lattice sites L. By using the
same steps and the projector feature D̂i “ D̂2

i the term with the double occupation
can be expanded in a similar way,

xΨg|D̂i|Ψgy “ xΨ0|g

ř

j

D̂j

D̂ig

ř

l

D̂l
|Ψ0y (2.23)

“xΨ0|
`

g2˘D̂i D̂i

`

g2˘
ř

j‰i

D̂j

|Ψ0y (2.24)
“xΨ0|r1` D̂ipg

2
´ 1qsD̂i

ź

j‰i

r1` D̂jpg
2
´ 1qs|Ψ0y (2.25)

“xΨ0|g
2D̂i

«

8
ÿ

m“0

pg2 ´ 1qm
m!

ÿ

f1...fm‰i

1

D̂f1 . . . D̂fm

ff

|Ψ0y . (2.26)

Exactly the same procedure for the term with the density operator gives

xΨg|n̂iσ|Ψgy “ xΨ0|r1` D̂ipg
2
´ 1qsn̂iσ

ź

j‰i

r1´ D̂jpg
2
´ 1qs|Ψ0y . (2.27)

Using the identity n̂iσn̂iσ “ D̂in̂iσ and equation 2.22 we obtain

xΨg|n̂iσ|Ψgy “ xΨ0|rn̂iσ ` D̂ipg
2
´ 1qs
«

8
ÿ

m“0

pg2 ´ 1qm
m!

ÿ

f1...fm‰i

1

D̂f1 . . . D̂fm

ff

|Ψ0y . (2.28)
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2 Analytic foundation

In the non-local term

xΨg|ĉ
:
iσ ĉjσ|Ψgy “ xΨ0|

´

gD̂i ĉ:iσg
D̂i
¯´

gD̂j ĉjσg
D̂j
¯

`

g2˘
ř

f‰i,j

D̂f

|Ψ0y (2.29)

D̂i does not commute with ĉiσ, so we simplify

gD̂i ĉiσg
D̂i “ r1` D̂ipg ´ 1qsĉiσr1` D̂ipg ´ 1qs (2.30)

with ĉiσn̂iσ “ ĉiσ and n̂iσ ĉiσ “ 0.

r1` D̂ipg ´ 1qsĉiσr1` D̂ipg ´ 1qs “ r1` n̂iσpg ´ 1qsĉiσ (2.31)

Applying the last relation and its adjunct relation, the term can also be expanded to

xΨg|ĉ
:
iσ ĉjσ|Ψgy “ xΨ0|ĉ

:
iσ ĉjσr1` n̂iσpg ´ 1qsr1` n̂jσpg ´ 1qs

«

8
ÿ

m“0

pg2 ´ 1qm
m!

ÿ

f1...fm‰i,j

1

D̂f1 . . . D̂fm

ff

|Ψ0y . (2.32)

We thus finished the expansion of the four terms in the small parameter pg2 ´ 1q.

Introducing a proper contraction

Next we replace the contraction xΨ0| . . . |Ψ0y with a new contraction t. . .u0 in order
to drop the restrictions in the sums for the terms

ÿ

f1...fm

1

xΨ0|D̂f1 . . . D̂fm |Ψ0y , (2.33)

ÿ

f1...fm‰i

1

xΨ0|D̂iD̂f1 . . . D̂fm |Ψ0y , (2.34)

ÿ

f1...fm‰i

1

xΨ0|n̂iσD̂f1 . . . D̂fm |Ψ0y , (2.35)

ÿ

f1...fm‰i,j

1

xΨ0|ĉ
:
iσ ĉjσD̂f1 . . . D̂fm |Ψ0y , (2.36)

ÿ

f1...fm‰i,j

1

xΨ0|ĉ
:
iσ ĉjσn̂iσD̂f1 . . . D̂fm |Ψ0y , (2.37)

ÿ

f1...fm‰i,j

1

xΨ0|ĉ
:
iσ ĉjσn̂jσD̂f1 . . . D̂fm |Ψ0y , (2.38)

ÿ

f1...fm‰i,j

1

xΨ0|ĉ
:
iσ ĉjσn̂iσn̂jσD̂f1 . . . D̂fm |Ψ0y . (2.39)
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2.3 Metzner and Vollhardt’s diagrammatic expansion in powers of g2 ´ 1

In all terms we write D̂p operator as n̂pσn̂pσ and then sort all operators with σ to
the left and all with σ to the right. Because contractions with respect to |Ψ0y of two
ĉ operators with different spin are always zero the expectation value splits into a
product of the expectation value of the σ-spin operators and the expectation of the
σ-spin operators. Next we normal order the operators and then we are able to drop
the restrictions in the sums, because for all restricted combinations of indices the
terms vanishes due to two or more identical creation or annihilation operators. The
result will be defined as the new contraction t. . .u0 of the original operators in the
old contraction xΨ0| . . . |Ψ0y. These applied steps for term 2.39 are:

ÿ

f1...fm‰i,j

1

xΨ0|ĉ
:
iσ ĉjσn̂iσn̂jσD̂f1 . . . D̂fm |Ψ0y

“
ÿ

f1...fm‰i,j

1

xΨ0|ĉ
:
iσ ĉjσn̂iσn̂jσn̂f1σn̂f1σ . . . n̂fmσn̂fmσ|Ψ0y

“
ÿ

f1...fm‰i,j

1

xΨ0|ĉ
:
iσ ĉjσn̂f1σ . . . n̂fmσn̂iσn̂jσn̂f1σ . . . n̂fmσ|Ψ0y

“
ÿ

f1...fm‰i,j

1

xΨ0|ĉ
:
iσ ĉjσn̂f1σ . . . n̂fmσ|Ψ0yxΨ0|n̂iσn̂jσn̂f1σ . . . n̂fmσ|Ψ0y

“
ÿ

f1...fm‰i,j

1 xΨ0|ĉ
:
iσ ĉjσ ĉ

:

f1σ ĉf1σ . . . ĉ
:

fmσ
ĉfmσ|Ψ0y

xΨ0|ĉ
:

iσ ĉiσ ĉ
:

jσ ĉjσ ĉ
:

f1σ ĉf1σ . . . ĉ
:

fmσ
ĉfmσ|Ψ0y

“
ÿ

f1...fm‰i,j

1 xΨ0|ĉ
:
iσ ĉjσ ĉ

:

f1σ . . . ĉ
:

fmσ
ĉfmσ . . . ĉf1σ|Ψ0y

xΨ0|ĉ
:

iσ ĉiσ ĉ
:

jσ ĉjσ ĉ
:

f1σ . . . ĉ
:

fmσ
ĉfmσ . . . ĉf1σ|Ψ0y

“
ÿ

f1...fm‰i,j

1 xΨ0|ĉ
:
iσ ĉ

:

f1σ . . . ĉ
:

fmσ
ĉfmσ . . . ĉf1σ ĉjσ|Ψ0y

xΨ0|ĉ
:

iσ ĉ
:

jσ ĉ
:

f1σ . . . ĉ
:

fmσ
ĉfmσ . . . ĉf1σ ĉjσ ĉiσ|Ψ0y

“
ÿ

f1...fm

xΨ0|ĉ
:
iσ ĉ

:

f1σ . . . ĉ
:

fmσ
ĉfmσ . . . ĉf1σ ĉjσ|Ψ0y

xΨ0|ĉ
:

iσ ĉ
:

jσ ĉ
:

f1σ . . . ĉ
:

fmσ
ĉfmσ . . . ĉf1σ ĉjσ ĉiσ|Ψ0y

”
ÿ

f1...fm

!

ĉ:iσ ĉjσn̂iσn̂jσD̂f1 . . . D̂fm

)

0
(2.40)

Both contractions xΨ0| . . . |Ψ0y and t. . .u0 have the same value at each of the non-
restricted indices combination and at every restricted the new contraction t. . .u0 is
zero. Defining the new contraction t. . .u0 was the second step in this section and we
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2 Analytic foundation

can rewrite terms of equations 2.21, 2.26, 2.28 and 2.32 and drop the restrictions in
the summations:

X̂ “

8
ÿ

m“0

pg2 ´ 1qm
m!

ÿ

f1...fm

D̂f1 . . . D̂fm , (2.41)

xΨg|Ψgy “

!

X̂
)

0
, (2.42)

xΨg|D̂i|Ψgy “ g
2
!

D̂iX̂
)

0
, (2.43)

xΨg|n̂iσ|Ψgy “

!

n̂iσr1` n̂iσpg2
´ 1qsX̂

)

0
, (2.44)

xΨg|ĉ
:
iσ ĉjσ|Ψgy “

!

ĉ:iσ ĉjσr1` n̂iσpg ´ 1qsr1` n̂jσpg ´ 1qsX̂
)

0
. (2.45)

Equation 2.45 is only valid for i ‰ j and equation 2.44 is the case i “ j. These two
equations can be combined to the formula

xΨg|ĉ
:
iσ ĉjσ|Ψgy “

ÿ

f1...fm

!

ĉ:iσ ĉjσr1` pg ´ 1qpn̂iσ ` n̂jσq

`pg ´ 1q2pn̂iσn̂jσ ` δijn̂iσqsX̂
)

0
, (2.46)

which is valid for all i and j. Because t. . . n̂iσn̂iσ . . .u0 is zero due to the definition of
t. . .u0, the Kronecker delta appears.

Diagrammatic expansion

The third step is to write equations 2.42, 2.43 and 2.66 as sums of diagrams. Those
three terms have the general form

!

x̂ijσX̂
)

0
“

8
ÿ

m“0

pg2 ´ 1qm
m!

ÿ

f1...fm

!

x̂ijσD̂f1 . . . D̂fm

)

0
. (2.47)

The operator x̂ijσ contains the scalar factors and the ĉ operators with index i and
j. When we apply Wick’s theorem on t. . .u0 it becomes a sum of products of
xΨ0|ĉ

:
pσ ĉqσ|Ψ0y ” P 0

σqp.

ÿ

f1...fm

!

x̂ijσD̂f1 . . . D̂fm

)

0
“

ÿ

f1...fm

«

ÿ

tp,q,r,su

p´1qfptp,q,r,suq
˜

ź

xp,qy

P 0
σqp

¸˜

ź

xr,sy

P 0
σrs

¸ff

(2.48)
The product of the P 0

σqp can be translated into a diagram. Every appearing index
becomes a vertex and every P 0

σqp becomes a directed colored line from q to p. Black
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lines indicate spin σ and orange spin σ. One example of how to translate the product
into a diagram is:

P 0
σif1P

0
σf1jP

0
σijP

0
σjiP

0
σf1f1 “

i j

f1 (2.49)

Some of the diagrams from Wick’s theorem are topologically equivalent, in this
examination two diagrams are topologically equivalent, if changing the indices fi of
one diagram in the right way, the reverse translation of both diagrams into a product
of P 0

σqp are identical. These diagrams

i

f1 f2
and

i

f1 f2
(2.50)

for example are topologically equivalent. Wick’s theorem creates every possible
contraction combination ones, so there are always m! topologically equivalent dia-
grams, m! is the number of different possible permutations of f1, . . ., fm. After the
summation over the lattice for all fi all topologically equivalent diagrams have the
same value and the same sign `1 or ´1. Hence the sum created by applying Wick’s
theorem can be rewritten as the sum over all topologically distinct diagrams G times
m!,

ÿ

f1...fm

!

x̂ijσD̂f1 . . . D̂fm

)

0
“ m!

ÿ

G

p´1qfpGqvpGq . (2.51)

Here vpGq is the value of the diagram G meaning the sum of f1, . . ., fm over the
product of P 0

σqp and fpGq is the sign function of a diagram G. The general form
(2.47) can be expressed as a sum of topologically distinct diagrams:

8
ÿ

m“0

pg2 ´ 1qm
m!

ÿ

f1...fm

!

x̂ijσD̂f1 . . . D̂fm

)

0
“

8
ÿ

m“0
pg2
´ 1qm

ÿ

G

p´1qfpGqvpGq . (2.52)

The diagrams G depend on the operator x̂ijσ and the order m. They have the
same topology as the diagrams in the so-called ϕ4 statistical field theory. Detailed
Feynman diagram rules are presented later in this section.

Linked-cluster theorem

Further comes the fourth step applying the linked-cluster theorem. This cancels the
disconnected diagrams of the numerator of an expectation value with the vacuum
diagrams of the denominator of the expectation value. We categorize the diagrams
into two groups, connected and disconnected diagrams. In a connected diagram a

11



2 Analytic foundation

vertex has a continuous connection to every other vertex, in a disconnected at least
between two vertices does not exist a continuous connection:

connected diagram:
i jf1

(2.53)

disconnected diagram:
i j

f1 (2.54)

Disconnected diagrams can be split up into a product of a smaller connected diagram
and vacuum diagrams. The connected diagram contains the vertices i and j and
the vacuum diagrams have solely the vertices fi. The term xΨg|Ψgy is one plus all
vacuum diagrams, because it does not have any operator with index i or j. An
example of how to split a disconnected diagram is shown below:

ř

f1

¨

˝

i j

f1

˛

‚ “
ř

f1

`

P 0
σijP

0
σf1f1P

0
σiiP

0
σf1f1

˘

“
`

P 0
σijP

0
σii

˘

ˆ

ř

f1

P 0
σf1f1P

0
σf1f1

˙

“

˜

i j

¸

ˆ

ř

f1
f1

˙

(2.55)

We take the general form 2.47 and split Wick’s theorem into a term with solely
connected diagrams and a second term with solely disconnected diagrams.

!

x̂ijσX̂
)

0
“

!

x̂ijσX̂
)c

0
`

!

x̂ijσX̂
)disc

0
(2.56)

!

x̂ijσX̂
)c

0
“

8
ÿ

m“0

pg2 ´ 1qm
m!

ÿ

f1...fm

!

x̂ijσD̂f1 . . . D̂fm

)c

0
(2.57)

!

x̂ijσX̂
)disc

0
“

8
ÿ

m“0

pg2 ´ 1qm
m!

ÿ

f1...fm

!

x̂ijσD̂f1 . . . D̂fm

)disc

0
(2.58)

The superscript c means that after applying Wick’s theorem the connected diagrams
are kept and the disconnected are discarded. The superscript ’disc’ is the opposite and
means to keep the disconnected and omit the connected diagrams. All disconnected

12



2.3 Metzner and Vollhardt’s diagrammatic expansion in powers of g2 ´ 1

diagrams can be written as a product of a smaller connected diagram and a vacuum
diagram.

!

x̂ijσX̂
)disc

0
“

8
ÿ

m“0

pg2 ´ 1qm
m!

m´1
ÿ

n“1

˜

m!
n!pm´ nq!

ÿ

f1...fn

!

x̂ijσD̂f1 . . . D̂fn

)c

0

¸

˜

ÿ

fn`1...fm

!

D̂fn`1 . . . D̂fm

)

0

¸

(2.59)

The factor m!
n!pm´nq! is necessary here, due to the fact that x̂ijσ can be contracted with

n different D̂fi from D̂f1 , . . ., D̂fm ,

!

x̂ijσX̂
)disc

0
“

8
ÿ

m“0

m´1
ÿ

n“1

˜

pg2 ´ 1qn
n!

ÿ

f1...fn

!

x̂ijσD̂f1 . . . D̂fn

)c

0

¸

˜

pg2 ´ 1qm´n
pm´ nq!

ÿ

f1...fm´n

!

D̂f1 . . . D̂fm´n

)

0

¸

. (2.60)

The double sum over m and n can be written as a product of sums of n and m with
the upper limit 8.

!

x̂ijσX̂
)disc

0
“

˜

8
ÿ

m“0

pg2 ´ 1qm
m!

ÿ

f1...fm

!

x̂ijσD̂f1 . . . D̂fm

)c

0

¸

˜

8
ÿ

n“1

pg2 ´ 1qn
n!

ÿ

f1...fn

!

D̂f1 . . . D̂fn

)

0

¸

(2.61)

If we let the sum over n start with n “ 0, additionally we get the term of the
connected diagrams times 1. So finally the general form 2.47 is a product of the
connected diagrams and the vacuum diagrams,

!

x̂ijσX̂
)

0
“

˜

8
ÿ

m“0

pg2 ´ 1qm
m!

ÿ

f1...fm

!

x̂ijσD̂f1 . . . D̂fm

)c

0

¸

˜

8
ÿ

n“0

pg2 ´ 1qn
n!

ÿ

f1...fn

!

D̂f1 . . . D̂fn

)

0

¸

. (2.62)

The term of the vacuum diagrams is identical to xΨg|Ψgy (2.42).

!

x̂ijσX̂
)

0
“

˜

8
ÿ

m“0

pg2 ´ 1qm
m!

ÿ

f1...fm

!

x̂ijσD̂f1 . . . D̂fm

)c

0

¸

xΨg|Ψgy (2.63)
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2 Analytic foundation

Consequently in the expectation values the factor xΨg|Ψgy from the disconnected
diagrams cancels with xΨg|Ψgy from the normalization. The expectation values of
the double occupation

xD̂iy “ g2
!

D̂iX̂
)c

0
(2.64)

and single-particle density matrix

Pσij ”
xΨg|ĉ

:
iσ ĉjσ|Ψgy

xΨg|Ψgy
(2.65)

“

!

ĉ:iσ ĉjσr1` pg ´ 1qpn̂iσ ` n̂jσq ` pg ´ 1q2pn̂iσn̂jσ ` δijn̂iσqsX̂
)c

0
. (2.66)

Wick’s theorem improved the expansion in two ways. First the vacuum and discon-
nected diagrams do not have to be evaluated. Second we gain an expansion in the
small parameter pg2 ´ 1q for the expectation values, while before we had separate
expansions for the nominator and the denominator of the expectation values.

Self-energy

In a fifth step we define a self-energy Sσij from which we can calculate the expectation
values xD̂iyg and Pσij in terms of a simpler diagrammatic expansion. The self-energy
Sσij is defined as

Sσij “
!

rpg2
´ 1q2c:iσcjσn̂iσn̂jσ ´ pg2

´ 1qδijn̂iσsX̂
)c

0
, (2.67)

and it contains the same diagrams as the self-energy in the Green-function formalism.
The same tools as in the Green-function formalism are available to construct the
diagrams and to reduce the amount of diagrams, which we have to evaluate. One way
to calculate Sσij is to use Wick’s theorem and to dismiss all disconnected diagrams.
Wick’s theorem gives also the sign of each diagram. Another way is to determine
rules, that create all diagrams up to a order n in the factor pg2 ´ 1q with the correct
sign and values. The rules to determine the order n in pg2 ´ 1q of Sσij are shown in
fingure 1.
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2.3 Metzner and Vollhardt’s diagrammatic expansion in powers of g2 ´ 1

1. Draw all topologically distinct connected diagrams with n vertices. Between
the vertices run n´ 1 directed lines with spin σ and n directed lines with spin
σ. At each vertex each kind of spin has at most one incoming line and one
outgoing line.

2. In each diagram the vertex without incoming σ line has index i and the vertex
without outgoing σ line has index j. If i and j fall together on the same vertex,
the vertex is index i and the diagram gets an factor δij . The remaining vertices
are indexed f1 to fm. m is equal to n´ 2, if vertex i and j are distinct, else it
is n´ 1.

3. Each vertex gives a factor pg2 ´ 1q and every line gives a factor P 0
σ1qp, where σ1

is the spin, q is the index of the outgoing vertex and p of the incoming vertex
of the line.

4. To obtain the value of a diagram sum the indices f1 to fm over the product of
all factors of the diagram.

5. The sign of the diagram is p´1q`, where ` is the number of closed spin loops in
the diagram.

6. Finally sum over all diagrams, each given by the product of its sign and value.

Figure 1: Rules to create the self-energy diagrams

The distinction between i “ j and i ‰ j in the first rule is due to the fact that δij
is zero for i ‰ j and t. . . n̂iσn̂jσ . . .u0 is zero for i “ j. The rule about the sign is
determined by the number of closed spin loops and needs a second thought. We start
with an example of how to count closed spin loops:

i

f1
f2

f3

f4
f5

j

(2.68)

The orange lines of spin σ build one closed loop from i to f1 to f2 to f4 to f5 to j to
f3 and back to i. Two closed loops are formed by the black lines of spin σ from f1 to
f2 and back and the second is from f4 to f5 and back. The black line from i to f3
and ending at j is not a closed loop, because it has a beginning and an ending. So
the sign of this example diagram is p´1q3 “ ´1. Deriving this rule is quite simple.
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2 Analytic foundation

Whenever two spin loops get combined to a bigger spin loop in an otherwise identical
diagram we gain a relative factor p´1q. This is valid for combining small loops

tc:iσciσu0tc
:
jσcjσu0 ÝÑ ´tc:jσciσu0tc

:
iσcjσu0

i j i j
(2.69)

and combining arbitrary large loops

tc:i1σci2σu0 . . . tc
:
in´1σcinσu0tc

:
inσci1σu0tc

:
j1σcj2σu0 . . . tc

:
jm´1σcjmσu0tc

:
jmσcj1σu0 “

(2.70)
tc:i1σci2σu0 . . . tc

:
in´1σcinσu0tc

:
inσci1σu0tc

:
jmσcj1σu0tc

:
j1σcj2σu0 . . . tc

:
jm´1σcjmσu0 “

(2.71)
´tc:i1σci2σu0 . . . tc

:
in´1σcinσu0tc

:
inσcj1σu0tc

:
jmσci1σu0tc

:
j1σcj2σu0 . . . tc

:
jm´1σcjmσu0 .

(2.72)

If the number of spin loops changes by one, the sign also changes. Therefore counting
the closed spin loops gives the correct relative sign. On the one hand the diagram

pg2 ´ 1q2`mtc:iσcjσu0tn̂iσu0tn̂jσu0tn̂f1σu0tn̂f1σu0 . . . tn̂fmσu0tn̂fmσu0

i j f1 fm
(2.73)

has an even number of spin loops and `1 as a sign, so all diagrams with i and j on
different vertices have a plus sign if they have an even number of spin loops, else a
minus sign. On the other hand the diagram

´pg2 ´ 1q1`mδijtn̂iσu0tn̂f1σu0tn̂f1σu0 . . . tn̂fmσu0tn̂fmσu0

i f1 fm
(2.74)

sets the sign of all diagrams with i “ j and odd number of spin loops to minus one.
We also need the connection of Sσij to xD̂iyg and Pσij. With the identities

!

ĉ:iσ ĉjσX̂
)c

0
“P 0

σij `
ÿ

q,p

P 0
σiqSσqpP

0
σqj , (2.75)

!

ĉ:iσ ĉjσn̂iσX̂
)c

0
“

´1
g2 ´ 1

ÿ

q

SσiqP
0
σqj , (2.76)

!

ĉ:iσ ĉjσn̂jσX̂
)c

0
“

´1
g2 ´ 1

ÿ

q

P 0
σiqSσqj , (2.77)

!

ĉ:iσ ĉjσn̂iσn̂jσX̂
)c

0
“

1
pg2 ´ 1q2Sσijp1´ δijq , (2.78)

!

D̂iX̂
)c

0
“

´1
g2 ´ 1

ÿ

q

P 0
σiqSσqi , (2.79)

16



2.3 Metzner and Vollhardt’s diagrammatic expansion in powers of g2 ´ 1

xD̂iyg and Pσij can easily expressed by Sσij

xD̂iyg “
g2

g2 ´ 1
ÿ

q

P 0
σiqSσqi , (2.80)

Pσij “P
0
σij ´ δij

«

Sσij
pg ` 1q2 `

g ´ 1
g ` 1

˜

ÿ

q

P 0
σiqSσqi

¸ff

`
ÿ

q,p

„ˆ

P 0
σiq ´

δiq
g ` 1

˙

Sσqp

ˆ

P 0
σqj ´

δpj
g ` 1

˙

. (2.81)

The validity of identity 2.78 is obvious from the definition of Sσij, the rest of the
identities can be explained by a diagrammatic argumentation. The argumentation
for the second identity 2.76 will be outlined in the following as an example for all
identities.

The left hand side of equation 2.76 can be expressed in diagrams which can be
constructed by rules which differ slightly from the rules for Sσij. Draw all topo-
logically different connected diagrams with vertex i, vertex j and vertices f1 to fn.
Vertex j has only one incoming σ line, the vertex i has one outgoing σ line and one
outgoing and one incoming σ, line and the other vertices have each one incoming
and one outgoing σ and σ line. All vertices f1 to fn give an factor g2 ´ 1 and the
vertices i and j only a factor 1. The sign of a diagram is ´p´1q`, with ` the number
of spin loops. The rest of the rules is identical to the rules for Sσij. The diagrams
of Sσiq become a diagram of the left hand side of 2.76 if we connect the vertex q of
Sσiq with a σ line to the new vertex j, sum q over the lattice and multiply with the
factor ´pg2 ´ 1q´1. The right hand side of 2.76 yields exactly the same, because it
takes Sσiq connects it with the vertex j with a σ line P 0

σqj, sums q over the lattice
and multiplies everything with the factor ´pg2 ´ 1q´1.

For the other identities the argumentation is similar, the diagrams of Sσij need
one or two additional lines, some vertices do not have the factor g2 ´ 1, and there
can be a global factor ´1. These diagrammatic techniques are well known from the
Green-function formalism and translate directly to the GWF.

Dyson equation

As in the Green-function formalism the proper self-energy S˚σij defined without the
one-particle-reducible diagrams by using the Dyson equation. The diagrammatic
expansion for the proper self-energy has the advantage that we have to evaluate
fewer diagrams, even if we have to solve the Dyson equation instead.

A one-particle-reducible diagram is a connected diagram of Sσij which splits into a
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2 Analytic foundation

disconnected diagram by removing one line. A one-particle-irreducible diagram is the
opposite by removing any line the diagram is still connected afterwards. Examples
for one-particle-reducible diagrams are:

i j
i f1 f2

f3

j i

f1 f2

f3

f4 f5

j
(2.82)

In the left example by removing P 0
σij the second order diagram separates into the

product of two first-order diagrams. The example on the right can be split into a
disconnected diagram by removing P 0

σif3 or P 0
σf3j. Note that always a σ line has

to be removed. Furthermore a one-particle-reducible diagram of order n can be
constructed by connecting a lower order one-particle-irreducible diagram of order n1
with a lower order connected diagram of order n2 by a σ line. Of course n “ n1 ` n2
and the two vertices that got connected over the σ line each have to be summed over
the lattice. Some examples for the one-particle-irreducible diagrams are:

i j

j

f1 f2

f3 j i

f1
f2

f3

f4
f5

j

(2.83)

The proper self-energy S˚σij is defined as only the one-particle-irreducible diagrams
of Sσij,

S˚σij “
!

rpg2
´ 1q2c:iσcjσn̂iσn̂jσ ´ pg2

´ 1qδijn̂iσX̂
)irr

0
. (2.84)

The superscript ’irr’ indicates that disconnected and one-particle-reducible diagrams
were removed. The self-energy Sσij is the sum of S˚σij and all the one-particle-reducible
diagrams. In order to create each one-particle-reducible diagram ones we need to
connect the one-particle-irreducible diagrams to chains. All possible chains of two
one-particle-irreducible diagrams are constructed by

ÿ

q,p

S˚σiqP
0
σqpS

˚
σpj . (2.85)

Sσij and S˚σij are entries of the L ˆ L-Matrices Sσ and S˚σ and L is the number of
lattice sites. Then the Matrix Sσ is S˚σ plus the sum of infinite sum of chains of
S˚σ-diagrams,

Sσ “S
˚
σ ` S

˚
σP

0
σS

˚
σ ` S

˚
σP

0
σS

˚
σP

0
σS

˚
σ ` . . . (2.86)

“

˜

8
ÿ

n“0

`

S˚σP
0
σ

˘n

¸

S˚σ (2.87)

“
`

1´ S˚σP 0
σ

˘´1
S˚σ . (2.88)
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2.3 Metzner and Vollhardt’s diagrammatic expansion in powers of g2 ´ 1

This equation can be written without inversion as

Sσ “ S˚σ ` S
˚
σP

0
σSσ . (2.89)

The matrix equation can be written explicitly as

Sσij “ S˚σij `
ÿ

q,p

S˚σiqP
0
σqpSσpj , (2.90)

and this final equation is called the Dyson equation and connects the self-energy
with the proper self-energy.

Dressed lines

By replacing the lines P 0
σij with dressed lines the proper self-energy can be expanded

solely in skeleton diagrams. A skeleton diagram is a one-particle-irreducible diagram,
which cannot be split into a disconnected diagram by removing two lines. Examples
for non-skeleton diagrams are:

i j
i

f1 f2

f3 j i

f1
f2

f3

f4
f5

j

(2.91)

The left diagram is not a skeleton diagram, because it is not even an one-particle-
irreducible diagram. The diagram in the middle becomes disconnected if the lines
from i to f1 and f2 to j are removed. For the right diagram exists three different
choices of removing two lines to obtain a disconnected diagram. Examples for skeleton
diagrams are:

i j

j

f1 f2

f3 j i

f1
f2

f3

f4
f5

j

(2.92)

We define dressed lines as

P σij ”

!

c:iσcjσX̂
)c

0
“ P 0

σij `
ÿ

q,p

P 0
σiqSσqpP

0
σqj . (2.93)

The diagrams of the dressed line P σij are the regular σ line from i to j plus the
self-energy diagrams Sσqp connected to the vertices i and j. The vertices q and
p are summed over the lattice. When replacing a line P 0

σij in a skeleton diagram
with a dressed line P σij, the skeleton diagram becomes an infinite sum of diagrams.
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The first element of the sum is the skeleton diagram itself and the rest are non-
skeleton one-particle-irreducible diagrams. The thick line in the left hand side of
2.94 represents the dressed line and the thin the regular lines,

“ ` ` ` ` ` . . . . (2.94)

By replacing all regular lines with dressed lines in all skeleton diagrams all diagrams
of S˚σij are created. The signs of these diagrams are also correct, because the number
of spin loops of such a diagram is the sum of the spin loops of the skeleton diagram
plus the spin loops of the included self-energy diagrams. Furthermore, no diagram is
generated twice. In conclusion the proper self-energy can be calculated by evaluating
just the skeleton diagrams and replacing all P 0

σij with P σij.

In order to illustrate the advantage of the Dyson equation and line dressing. Three
tables follow, which each contains the diagrams up to the third order for the three
different kinds of diagrams. The diagrams for the self-energy Sσij up to order three
are shown in the table 2 and there are a total of 17.

n “ 1

n “ 2

n “ 3

Figure 2: Self-energy diagrams up to order 3

The number of diagrams for the proper self-energy S˚σij up to order three is only
eleven and are displayed in the next table 3.
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n “ 1

n “ 2

n “ 3

Figure 3: Proper self-energy diagrams up to order three

Finally, for the proper self-energy with dressed lines up to order three are only four.
The lines are drawn thicker in table 4 to show that the lines are dressed lines.

n “ 1
n “ 2
n “ 3

Figure 4: Proper self-energy diagrams with dressed lines up to order three
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2.4 Gebhard’s diagrammatic expansion
Gebhard reformulated the diagrammatic expansion in order to expand for high
dimensions in 1{d [4]. He decomposed the double occupation operator D̂i into a
single-particle Hatree-Fock term D̂HF

i and the remaining two-particle term pD̂i´D̂
HF
i q.

The single-particle term is applied to the uncorrelated state |Ψ0y and the diagram-
matic expansion is in pD̂i´D̂

HF
i q instead of D̂i. The resulting diagrammatic expansion

has an topologically equivalent self-energy as in Metzner and Vollhardt’s formalism,
but every vertex i gives a factor xi instead of g2 ´ 1 and every line is P̃ 0

σij instead of
P 0
σij. The general steps in this expansion are very similar, therefore this section is

restricted to the basic idea of Gebhard’s formalism, a short outline of the remaining
steps and the results for the diagrammatic evaluation.

Decomposing the double occupation into its single-particle Hartree-Fock part D̂HF
i

and the rest D̃i is the main idea.

D̂i “ D̂
HF
i ` D̃i (2.95)

D̃i ” D̂i ´ D̂
HF
i (2.96)

The single-particle Hartree-Fock contribution is given by

D̂HF
i “ n̂iσxn̂iσy0 ` n̂iσxn̂iσy0 ´ xn̂iσy0xn̂iσy0 . (2.97)

We will contract with Wick’s theorem only the operators

D̃i “ ñiσñiσ , (2.98)
ñiσ ” n̂iσ ´ xn̂iσy0 “ ĉ:iσ ĉiσ ´ δiixĉ

:
iσ ĉiσy0 (2.99)

in order to get only the propagators without on-site term

P̃ 0
σij ” ĉ:iσ ĉjσ ´ δijxĉ

:
iσ ĉiσy0 . (2.100)

By doing this the lines in the diagrams are going to be P̃ 0
σij instead of P 0

σij. For
getting there the expectation values of the GWF have to be rewritten in the operators
D̃i and ñiσ instead of the natural operators D̂i and n̂iσ.

Previously we used the operator

g2D̂
“
ź

i

´

1` pg2
´ 1qD̂i

¯

with D̂ “
ÿ

i

D̂i , (2.101)

which generated all the diagrams. Now we want to replace D̂i by D̃i with the purpose
to decrease the on-site contributions of the operator and use a new expansion variables
xi. Herefore we use the operator

g2K̂
“
ź

i

`

1` xiD̃i

˘

. (2.102)
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2.4 Gebhard’s diagrammatic expansion

The hermitian operator K̂ equals D̂ plus local single-particle operators with real
variables, because these single-particle operators are easy to deal with. Explicitly,

K̂ “
ÿ

i

K̂i , (2.103)

K̂i “ D̂i ´ µiÒn̂iÒ ´ µiÓn̂iÓ ` ηi . (2.104)

By equation 2.102 the real parameters xi, µiÒ, µiÓ and ηi are determined,

g2K̂i “ 1` xiD̃i , (2.105)
g2ηi “ 1` xixn̂Òy0xn̂iÓy0 , (2.106)

g2ηi´2µiÒ “ 1` xixn̂iÒy0pxn̂iÓy0 ´ 1q , (2.107)
g2ηi´2µiÓ “ 1` xixn̂iÓy0pxn̂iÒy0 ´ 1q , (2.108)

g2ηi´2µiÒ´2µiÓ´2
“ 1` xip1´ xn̂iÓy0 ´ xn̂iÒy0 ` xn̂iÓy0xn̂iÒy0q . (2.109)

Solving for the parameter xi leads to

xi “
´1` p1´ g2qpni0 ´ 2di0q `

a

1` pg2 ´ 1qrni0p2´ ni0q ` g2mi0s

2p1´ g2qdi0p1´ ni0 ` di0q
(2.110)

with the use of the following abbreviations

ni0 “xn̂iÒy0 ` xn̂iÓy0 , (2.111)
di0 “xn̂iÒy0xn̂iÓy0 , (2.112)
mi0 “xn̂iÒy0 ´ xn̂iÓy0 . (2.113)

The single-particle part of K̂ is called Ŝ,

Ŝ “ K̂ ´ D̂ “
ÿ

i

´µiÒn̂iÒ ´ µiÓn̂iÓ ` ηi . (2.114)

As before we want to calculate the term (for i ‰ j)

xΨg|ĉ
:
iσ ĉjσ|Ψgy “ xΨ0|g

D̂ĉ:iσ ĉjσg
D̂
|Ψ0y (2.115)

“xΨ0|g
´ŜgK̂i`K̂j ĉ:iσ ĉjσg

K̂i`K̂jg

ř

f‰i,j

2K̂f
g´Ŝ|Ψ0y (2.116)

“xΦ0|g
K̂i ĉ:iσg

K̂igK̂j ĉjσg
K̂j

ź

f‰i,j

`

1` xfD̃f

˘

|Φ0y (2.117)

But now we contract with the state

|Φ0y “ g´Ŝ|Ψ0y (2.118)
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2 Analytic foundation

and not with the state |Ψ0y. |Φ0y is still a product of single-particle wave functions,
because |Ψ0y is a Slater determinant and g´Ŝ is just a single-particle operator. The
expectation values with respect to the uncorrelated state are now with respect to
|Φ0y, including the ones in equation 2.97,

xÂy0 ”
xΦ0|Â|Φ0y

xΦ0|Φ0y
. (2.119)

If |Ψ0y is the Fermi sea, then |Φ0y is also the Fermi sea, because g´Ŝ just gives a
constant factor when applied to the Fermi sea, which cancels in the expectation
values. However, in general the states |Φ0y and |Ψ0y differ more then just by a factor.
From now on we assume that |Φ0y is normalized. The operators

gK̂i ĉ:iσg
K̂i “ ĉ:iσ

?
qiσr1` xiαiσñiσs , (2.120)

gK̂j ĉjσg
K̂j “ ĉjσ

?
qjσr1` xjαjσñjσs , (2.121)

can be expressed with the operators ñiσ by using the abbreviations

?
qjσ “p1` xipdi0 ´ xn̂iσy0qqr1` xn̂iσy0pg ´ 1´ g xixn̂iσy01` xidi0

qs , (2.122)

αiσ “
g ´ 1´ g xixn̂iσy01`xidi0

xir1` xn̂iσy0pg ´ 1´ g xixn̂iσy01`xidi0 qs
. (2.123)

Similarly the operators

gK̂in̂iσg
K̂i “xn̂iσy0 ` ñiσ ` xip1´ 2xn̂iσy0qD̃i ` xip1´ xn̂iσy0qxn̂iσy0ñiσ , (2.124)

gK̂iD̂ig
K̂i “ r1` xip1´ ni0 ` di0qsrdi0 ` p1´ xidi0qD̃ `

ÿ

σ

xn̂iσy0ñiσs , (2.125)

can be expressed only with the operators ñiσ and D̃i. Now all remaining steps are
similar as before. We have the general form

xΦ0|x̃σij
ź

f‰i,j

`

1` xfD̃f

˘

|Φ0y “

8
ÿ

m“0

1
m!

ÿ

f1...fm‰i,j

1

xf1 . . . xfm

xΦ0|x̃σijD̃f1 . . . D̃fm |Φ0y . (2.126)

The contraction xΦ0| . . . |Φ0y will be replaced by a new contraction t. . .u0, which has
the same value if any two operators ñiσ are not identical, else the new contraction is
zero,

xΦ0|x̃σij
ź

f‰i,j

`

1` xfD̃f

˘

|Φ0y “

8
ÿ

m“0

1
m!

ÿ

f1...fm

xf1 . . . xfmtx̃σijD̂f1 . . . D̂fmu0 . (2.127)
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2.4 Gebhard’s diagrammatic expansion

The disconnected diagrams from the numerators of the expectation values cancel
with the denominator,

xΦ0|x̃σij
ś

f‰i,j

`

1` xfD̃f

˘

|Φ0y

xΦ0|
ś

f

`

1` xfD̃f

˘

|Φ0y
“

8
ÿ

m“0

1
m!

ÿ

f1...fm

xf1 . . . xfmtx̃σijD̂f1 . . . D̂fmu
c
0 . (2.128)

We define a self-energy

S̃σij “ ´ xiδijtñiσX̃u
c
0 ` xixjtĉ

:
iσ ĉjσñiσñjσX̃u

c
0 , (2.129)

X̃ “

8
ÿ

m“0

1
m!

ÿ

f1...fm

xf1 . . . xfmD̂f1 . . . D̂fm . (2.130)

The self-energy S̃σij has the same rules as the previous self-energy Sσij, except that
every line stands for

P̃ 0
σij ” tĉ

:
iσ ĉjσu0 ´ δijtĉ

:
iσ ĉiσu0 “ xΦ0|ĉ

:
iσ ĉjσ|Φ0y ´ δijxn̂iσy0 (2.131)

and not for P 0
σij “ xΨ0|ĉ

:
iσ ĉjσ|Ψ0y, and every vertex i gives a factor xi instead of

g2 ´ 1. With diagrammatic arguments the terms

tĉ:iσ ĉjσX̃u
c
0 “ P̃

0
σij `

ÿ

q,p

P̃ 0
σiqS̃σqpP̃

0
σpj pi ‰ jq , (2.132)

tĉ:iσ ĉjσñiσX̃u
c
0 “

´1
xi

ÿ

p

S̃σipP̃
0
σpj pi ‰ jq , (2.133)

tĉ:iσ ĉjσñjσX̃u
c
0 “

´1
xj

ÿ

q

P̃ 0
σiqS̃σqj pi ‰ jq , (2.134)

tD̃iX̃u
c
0 “

´1
xi

ÿ

q

P̃ 0
σiqS̃σqi , (2.135)

can again be expressed by the self-energy S̃σij. Directly from the definition of the
self-energy we deduce

tĉ:iσ ĉjσñiσñjσX̃u
c
0 “

1
xixj

S̃σij pi ‰ jq , (2.136)

tñiσX̃u
c
0 “

´1
xi
S̃σii . (2.137)
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2 Analytic foundation

The expectation values as functions of the self-energy S̃σij are

Pσij “
?
qiσ
?
qjσ

˜

P̃ 0
σij `

ÿ

q,p

pP̃ 0
σiq ´ δiqαiσqS̃σqppP̃

0
σpj ´ δpjαjσq

¸

pi ‰ jq ,

(2.138)

Pσii “xn̂iσy0 ´
1
xi
S̃σii ´ p1´ xn̂iσy0qxn̂iσy0S̃σii ´ p1´ 2xn̂iσy0q

ÿ

q

P̃ 0
σiqS̃σqi ,

(2.139)

xD̂iyg “ r1` xip1´ ni0 ` di0qsrdi0 ´
1
xi

ÿ

σ

xn̂iσy0S̃iiσ ´
p1´ xidi0q

xi

ÿ

q

P̃ 0
σiqS̃σqis .

(2.140)

Analogously to the previous section the evaluation of the skeleton diagrams is enough
if we use the Dyson equation and dressed lines. By using the Dyson equation the
self-energy S̃σij gets stripped of one-particle reducible diagrams,

S̃σij “ S̃˚σij `
ÿ

q,p

S̃˚σiqP̃
0
σqpS̃σpj . (2.141)

The proper self-energy S̃˚σij can again be calculated by evaluating only the skeleton
self-energy diagrams and replacing the normal lines P̃ 0

σij with the dressed lines,

P̃σij “ P̃ 0
σij `

ÿ

q,p

P̃ 0
σiqS̃σqpP̃

0
σpj . (2.142)
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3 Numerical investigation
3.1 Generating skeleton diagrams
We want to calculate the proper self-energy in Metzner’s and Gebhard’s formalism up
to high orders for the GWF, for that we need the skeleton diagrams up to these orders.
These diagrams are generated by a Mathematica program, which was developed and
tested by us during a ”Projektarbeit” [8]. The procedure and the results of this
”Projektarbeit” will be discussed in this section 3.1.

The initial uncorrelated states |Ψ0y and |Φ0y are the paramagnetic Fermi sea of the
tight binding Hamiltonian. Thus we have a translational invariant system, because
the Gutzwiller correlator acts uniformly. Consequently the self-energies and their
diagrams solely depend on distance between vertex i and j and not on the actual
positions in the lattice. Hence the vertex i can be set to zero for the following
calculations. Furthermore our system is invariant under inversion of the direction
and has spin degeneracy. For that reasons the value of a diagram only depends on
which vertices are connected by a line and not by the direction or the spin of the line.
Hence the diagrams with a topologically equal connections between their vertices
have the same value. Instead of evaluating each of these diagrams separately, we
evaluate the value of just one diagram and multiply it with a weight. The weight is
the sum of the signs of the topologically distinct connected diagrams.

` ` “ ´3 (3.1)

Above is the example of a fourth-order diagram. There are three topologically
different diagrams, but with the same vertices connected in each diagram. They
differ in the kind of their lines or in the direction of their lines. ´3 is the weight of
the diagram without directions and different spins, because the first diagram on the
left hand side has three spin loops and the other two have one spin loop.

One possibility to compute all skeleton diagrams is to use the wick theorem and
create all possible diagrams. Then sort all unwanted diagrams like disconnected
and non-skeleton diagrams out and finally sort all diagrams together with the same
values and sum its weight together. This method is relatively simple to implement,
but produces lots of unwanted disconnected diagrams and that slows this method in
high orders.

The way we computed the diagrams is by using a program written in Mathematica by
Kastening et al. [9]. Their program generates the connected diagrams by construction
from the lower order diagrams. This procedure creates only a few disconnected
diagrams and therefore is faster for higher orders. However, their program generates
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3 Numerical investigation

the diagrams for a ϕ4-field theory and not the diagrams for our problem. The ϕ4-field
theory diagrams have only non-directed lines and one type of line. Thus the diagrams
of Kastening et al. program look like the diagram on the right hand side of the
equation 3.1.

The ϕ4-field theory diagrams correspond to the one-particle irreducible diagrams of
the self-energy. Thus our task is now to write a program, that reads their output,
then sorts out the non-skeleton diagrams, calculates the weights and finally returns
them in an optimized form to evaluate them numerically.

The functionality of our program will be discussed in the following. We start
with the question of how to read their output. The Kastening program writes its
n-th order diagrams in lists of length n` 1, in each entry i of this list is a list of i
integers. The integer on position j in the i-th list tells us how many lines run from
vertex i to vertex j. The length of the list is increasing with their position, because
we now deal with non-directed graphs. It is sufficient to connect a vertex just with
the vertices with lower numbers. The first vertex of each Kastening diagram is an
external vertex and have to be removed to obtain the correct self-energy diagram.
The following example will make the notation clear.

tt0u,
t0, 0u,
t0, 3, 0u,
t0, 1, 1, 0u,
t2, 0, 0, 2, 0uu

ÝÑ

1
2

3 4

5 ÝÑ

f1

f2 f3

i

(3.2)

The third entry t0, 3, 0u in this example 3.2 implies that three lines are running from
vertex 3 to vertex 2, because it is the third entry. Then the fourth entry t0, 1, 1, 0u
implies one line from 4 to 2 and another line from 4 to 3. Finally the last entry
t2, 0, 0, 2, 0u stands for two lines from 5 to 1 and two lines from 5 to 4. The second
arrow in 3.2 removes the external vertex and labels the vertices in the familiar way.
In the code we remove the external vertex at the end, because then we can easily
identify the vertices i and j over which we do not sum.

In our code we use two different representations of the diagrams, because we need
to handle directed diagrams. The first one is the adjacency matrix, which is very
similar to Kastening’s representation. For a n-th order diagram the adjacency matrix
is a pn ` 1q ˆ pn ` 1q matrix and the matrix element in row i and column j is an
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3.1 Generating skeleton diagrams

integer, that tells us how many lines run from vertex i to vertex j. The example 3.1
in an adjacency matrix form is

tt0u,
t0, 0u,
t0, 3, 0u,
t0, 1, 1, 0u,
t2, 0, 0, 2, 0uu

ÝÑ

1
2

3 4

5 ÝÑ

¨

˚

˚

˚

˚

˝

0 0 0 0 0
0 0 0 0 0
0 3 0 0 0
0 1 1 0 0
2 0 0 2 0

˛

‹

‹

‹

‹

‚

. (3.3)

The second representation is the edge list form. This is a list and each entry stands
for one connection of the diagram. Each connection is represented by a list of two
entries, the first entry is the outgoing vertex of the directed line and the second is
the incoming vertex.

¨

˚

˚

˚

˚

˝

0 0 0 0 0
0 0 0 0 0
0 3 0 0 0
0 1 1 0 0
2 0 0 2 0

˛

‹

‹

‹

‹

‚

ÝÑ

1
2

3 4

5 ÝÑ

tt3, 2u, t3, 2u, t3, 2u,
t4, 2u, t4, 3u, t5, 1u,
t5, 1u, t5, 4u, t5, 4uu

(3.4)

Excluding the non-skeleton diagrams

The first stage of our program is to sort out the non-skeleton diagrams. In order to
do that each diagram gets checked, whether it is a skeleton diagram or not. For that
we represent the diagram in the edge list form and remove two entries from the edge
list and then check whether the diagram is still connected or not. Removing two
entries from the edge list is equivalent to cutting these two lines in the diagram. If
we remove the last two entries in the edge list of example 3.4, then the diagram gets
disconnected, so the diagram from example 3.4 is not a skeleton diagram.

tt3, 2u, t3, 2u, t3, 2u,
t4, 2u, t4, 3u, t5, 1u,
t5, 1uu

ÝÑ

1
2

3 4

5 (3.5)

For an arbitrary diagram with n connections we have to remove all possible pairs
of connections and check, if they are still connected or not. Only if in all npn´ 1q
cases the diagram is connected after removing each pair, then the diagram is truly a
skeleton diagram. Whether a diagram is connected or not can easily be checked with
the Mathematica package Combinatorica, because it contains instructions, which act
on diagrams, and one of these build-in functions checks if a diagram is connected or
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3 Numerical investigation

not. For example the surviving of the second-order skeleton diagram of this check is
shown below:

1

2 3
“ tt1, 2u, t2, 3u, t3, 1u, t2, 3u, t3, 2uu

ÝÑ
1

2 3
“ tt3, 1u, t2, 3u, t3, 2uu

ÝÑ 2 3 “ tt2, 3u, t2, 3u, t3, 2uu

ÝÑ
1

2 3
“ tt2, 3u, t3, 1u, t3, 2uu

ÝÑ
1

2 3
“ tt2, 3u, t3, 1u, t2, 3uu

ÝÑ
1

2 3
“ tt1, 2u, t2, 3u, t3, 2uu

ÝÑ
1

2 3
“ tt1, 2u, t3, 1u, t3, 2uu

ÝÑ
1

2 3
“ tt1, 2u, t3, 1u, t2, 3uu

ÝÑ
1

2 3
“ tt1, 2u, t2, 3u, t3, 2uu

ÝÑ
1

2 3
“ tt1, 2u, t2, 3u, t2, 3uu

ÝÑ
1

2 3
“ tt1, 2u, t2, 3u, t3, 1uu

(3.6)

Computing the diagram weights

Now we have the skeleton diagrams and the next step is to calculate the weight of
each skeleton diagram. For that we generate all directed diagrams, sort out the not
allowed and topologically equivalent. Next from each directed diagram we generate
all diagrams with spin σ and spin σ lines and sort out again the not allowed and
topologically equivalent diagrams.

In order to generate all directed diagrams, we take each undirected diagram and
represent it in the edge list form. This edge list we interpret as the first directed
diagram, the other directed diagrams we obtain by doing every possible combination
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3.1 Generating skeleton diagrams

of line reversings. So if a diagram has n connections, we generate 2n directed dia-
grams. Due to the rules of how to construct the self-energy (figure 1) each vertex in
each directed diagram is only permitted to have two ingoing and two outgoing lines
except for the vertex 1, which has only one ingoing and one outgoing line. So most of
the 2n direct diagrams are going to be dismissed. To check the amount of outgoing
and incoming lines in a vertex of a diagram can easily be done in the adjacency
matrix representation of the diagram. The sum of the elements in the i-th row is
the number of outgoing lines of the vertex i and the sum of the elements in the j-th
column is the number of incoming lines of vertex j. So forth a directed diagram is
allowed if the sum of the first row is one, the sum of the first column is one and the
sum of each other row or column is two. An example for a not allowed diagram is

1
2

3 4

5 “

¨

˚

˚

˚

˚

˝

0 1 0 0 0
0 0 1 1 0
0 0 0 1 1
0 0 1 0 0
1 1 0 1 0

˛

‹

‹

‹

‹

‚

, (3.7)

because the sum of the last row is three and not two. The next example is an allowed
directed diagram

1
2

3 4

5 “

¨

˚

˚

˚

˚

˝

0 1 0 0 0
0 0 1 1 0
0 0 0 1 1
0 0 1 0 1
1 1 0 0 0

˛

‹

‹

‹

‹

‚

, (3.8)

in which the sum rule for the rows and columns is fulfilled. For the undirected
diagram

1

2
3

4 (3.9)

we find four allowed directed diagrams

1

2
3

4
,

1

2
3

4
,

1

2
3

4
,

1

2
3

4
. (3.10)

Of these four directed diagrams the first two diagrams are topologically equivalent
and the last two are also topologically equivalent, because they become identical,
when exchanging vertex 2 with vertex 4. Of these four diagrams we keep just two of
them, one from the first two and one from the last two, because we only want the
topologically distinct diagrams in the end.
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Next we need to dismiss all the topologically equivalent diagrams except for one,
so that we have exactly one diagram of each topological kind. For that we have
to check whether a directed is topologically equivalent to one of the previous di-
rected diagrams. If it is, we dismiss it, and else we keep it. If we already have m
topologically distinct directed diagrams and we generate a new allowed diagram, we
have to test this new diagram for topological equivalence with all previousm diagrams.

Two diagrams are topologically equivalent if it is possible to make the two dia-
grams identical by renaming the vertices. One way is to rename the vertices 1 to
pn` 1q of a n-th order diagram in all pn` 1q! possible permutations and check for
each permutation if the diagrams become identical. But it is more efficient to exploit
the properties of our diagrams. The vertex 1 has only one incoming and one outgoing
line and due to this it is distinguishable from the other vertices. So vertex 1 can
be excluded from the permutation and the number of permutations decreases from
pn` 1q! to n!. From vertex 1 leaves one outgoing line, it ends in another vertex. By
this, this vertex becomes also distinguishable from the other vertices. This vertex
can be named 2. The same holds true for the other vertex, which is connected to 1,
and can in general be named 3. The case when the two lines from vertex 1 connect
with the same vertex is not important for us, because for the skeleton diagrams this
happens only in the first order diagram and not in higher order diagrams.

Whether two diagrams are identical or not can easily be done with their adja-
cency matrices, because the adjacency matrix of a diagram is unique. The process
of testing, if two diagrams are topologically equivalent is illustrated by an example.
We have one fourth-order diagram and rename the vertices, which are connected to 1
with 2 and 3.

1
2

3 4

5 ÝÑ

1
2

5 4

3 “

¨

˚

˚

˚

˚

˝

0 1 0 0 0
0 0 0 1 1
1 1 0 0 0
0 0 1 0 1
0 0 1 1 0

˛

‹

‹

‹

‹

‚

(3.11)

Then we have a second diagram, which gets checked for topological equivalence with
the first diagram.

1
2

43

5 (3.12)
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3.1 Generating skeleton diagrams

The vertices 1, 2 and 3 are fixed, but for the vertices 4 and 5 we need all two possible
permutations.

1
2

45

3 “

¨

˚

˚

˚

˚

˝

0 1 0 0 0
0 0 0 1 1
1 1 0 0 0
0 0 1 0 1
0 0 1 0 1

˛

‹

‹

‹

‹

‚

,

1
2

54

3 “

¨

˚

˚

˚

˚

˝

0 1 0 0 0
0 0 0 1 1
1 1 0 0 0
0 0 1 0 1
0 0 1 1 0

˛

‹

‹

‹

‹

‚

. (3.13)

The first permutation, in which 5 is the upper left vertex and 4 is the upper right
vertex, is not identical to the diagram in 3.11, but the second permutation, in which
4 is top left and 5 top right, is identical to the given diagram in 3.11, because their
adjacency matrices are identical.

Now we allocated all the allowed and topologically distinct directed diagrams, the
next step is to generate from these diagrams the diagrams with spin σ and spin σ
lines. Because it is easier to handle diagrams with one kind of line in the computer,
we take one directed diagram and split it into two diagrams, one diagram with solely
spin σ lines and the other with solely spin σ lines. The first diagram represents
the σ lines of the diagram with two types of lines and the second diagram the σ
lines. A diagram of order n has p2n` 1q lines and pn` 1q lines are σ lines and the
remaining n lines are σ lines. Compared to the self-energy rules (figure 1) there are
two additional σ lines in each diagram, which connect with the external vertex 1.

From the p2n ´ 1q lines the two lines attached to vertex 1 and additional pn ´ 1q
lines go to the first diagram and the remaining n lines go to the second diagram.
This means that from one directed diagram we create n out of p2n´ 1q, i.e.,

ˆ

2n´ 1
n

˙

“
p2n´ 1q!
pn´ 1q!n! (3.14)

diagram pairs. The disallowed diagram pairs are excluded by checking their adjacency
matrices. In each vertex of each line type only one line converges and one line emerges,
so the sum over a row or column in one of the adjacency matrices is always one. If
the sum over one row or one column is not one, the diagram pair is not allowed. An
example of an allowed fourth order diagram pair is

1
2

54

3 ÝÑ

$

’

’

&

’

’

%

1
2

54

3 ,
2

54

3

,

/

/

.

/

/

-

. (3.15)
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Expressing the diagram pair in adjacency matrices:

1
2

54

3 “

¨

˚

˚

˚

˚

˝

0 1 0 0 0
0 0 0 0 1
1 0 0 0 0
0 0 1 0 0
0 0 0 1 0

˛

‹

‹

‹

‹

‚

,
2

54

3
“

¨

˚

˚

˝

0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0

˛

‹

‹

‚

(3.16)

The adjacency matrix of the σ diagram is smaller by one row and column than the
adjacency matrix of the σ diagram, because the σ diagram does not contain the
external vertex 1. These two adjacency matrixes are allowed, hence the sum over
each row or column of each matrix is one.

We could proceed similarly for the directed diagrams and could sort out the topo-
logically equivalent diagram pairs, but there exists a computationally cheaper way,
because checking all diagram pairs for topological equivalence is computationally
expensive. We calculate for each directed diagram how many topologically equivalent
pairs appear and divide the contribution of this directed diagram to the weight of
the undirected diagram by this number.

If we have two lines emerging from the same vertex and converging in the same vertex
again, these lines are called parallel. For each parallel line pair in a directed diagram
twice as many allowed diagram pairs are generated. If we have a parallel line in a
directed diagram, one of these lines has to be a σ line and the other has to be a σ line.
The computer generates both possibilities namely that the first line is a σ line and the
second is the σ line and the reverse. Hence we need to count the number of parallel
lines in every directed diagram and divide by two to the power number of parallel lines.

Counting the parallel lines is enough to count the number of identical diagrams,
but we also need the number of topologically equivalent diagrams. Therefore we
count how many permutations of a directed diagram are identical to each other. The
procedure is analogous to checking two directed diagrams for topological equivalence,
but now the diagram is going to be checked with itself. The symmetry factor is the
number of times a permutation of the diagram itself is identical to itself. The vertices
1, 2 and 3 are determined as before and are excluded from the permutation procedure.
In the following example we see the two possible permutations of a directed diagram
and they are identical

1
2

54

3 “

¨

˚

˚

˚

˚

˝

0 1 0 0 0
0 0 0 1 1
1 1 0 0 0
0 0 1 0 1
0 0 1 1 0

˛

‹

‹

‹

‹

‚

,

1
2

45

3 “

¨

˚

˚

˚

˚

˝

0 1 0 0 0
0 0 0 1 1
1 1 0 0 0
0 0 1 0 1
0 0 1 1 0

˛

‹

‹

‹

‹

‚

. (3.17)
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Thus the symmetry factor for this directed diagram is two. Now we gathered all
tools to calculate the weight of the undirected diagrams. The undirected diagrams
and their weights up to order four are shown in table below (figure 5).

1 -1

2 -1
3 -2
4 -3 -1 -1

Figure 5: Undirected diagrams and their weights up to order four

Generating the arguments of the diagram values

After computing the weights of the undirected diagrams, we now proceed to calculat-
ing their values. In this section we do not perform the summation, rather we only
write the argument of the summation in a proper way to use it later in a C program.
In this C program we do the summation numerically up to a cutoff rmax. Due to
the rules of the self-energy Sσij (figure 1) every line gives a factor P 0

σ1qp. We use the
skeleton diagrams for the proper self-energy S˚σij, every line corresponds to P σ1qp.
For symmetry reasons we can drop the spin dependence of P 0 and P . Additionally
the system is translationally invariant, so the dependence of i and j reduces to the
dependence on pRi ´Rjq. Here i is the lattice site index and Ri is the lattice vector.

P 0
σ1qp ÝÑ P 0

pRq ´Rpq , P σ1qp ÝÑ P pRq ´Rpq (3.18)

Additionally our system is invariant under inversion of space, so

P 0
pRq ´Rpq “ P 0

pRp ´Rqq , P pRq ´Rpq “ P pRp ´Rqq . (3.19)

Hence a line running from vertex q to vertex p gives the same factor as a line running
in the reverse way and it suffices to calculate the value from the undirected diagrams.
We represent an undirected diagram in its edge list form and obtain form it the
product of P , like in the following example:

1
2
4 5

3 ÝÑ tt1, 2u, t2, 4u, t2, 4u, t4, 5u, t4, 5u, t5, 3u, t5, 3u, t3, 1u, t3, 2uu

ÝÑ
`

P pR2 ´R4q
˘2 `

P pR4 ´R5q
˘2 `

P pR5 ´R3q
˘2
P pR3 ´R2q

(3.20)
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Beware that the lines attached to the external vertex 1 do not contribute factors P ,
because the external vertex was only added to identify the vertices i and j more
easily. Due to translational invariance R2 can be set to zero and then R3 is set to
R, where as R is the lattice vector on which the proper self-energy S˚pRq depends.

4 5
R

ÝÑ
`

P pR4q
˘2 `

P pR4 ´R5q
˘2 `

P pR5 ´Rq
˘2
P pRq (3.21)

The remaining pn´ 1q vertices of a n-th order diagram should be renamed. The first
vertices is named R0 and not R1, because then the notation is more similar to the
notation used in the C program.

0 1
R

ÝÑ
`

P pR0q
˘2 `

P pR0 ´R1q
˘2 `

P pR1 ´Rq
˘2
P pRq (3.22)

Optimizing the arguments of the diagram values

Now we could start with the summation over R0, . . . ,Rn´1, but the numerical sum-
mation up to a cutoff rmax is the computationally most expensive part of the program.
So the argument of the summation has to be optimized, that the contribution outside
of the cutoff rmax is minimal. Our optimization tool is to choose a new basis of lattice
vectors r0, . . . , rn´1 instead of the old basis R0, . . . ,Rn´1. In this new basis the argu-
ment of the summation should decay as fast as possible for any |rm| greater then rmax.

For the Fermi sea the functions P 0pRq decays algebraically in |R|. If we have
a factor P 0prmq in the argument of the summation for any rm, then we have ensured
that the argument of the summation decays algebraically for any |rm|. The advantage
of the basis transformation from tRmu to trmu becomes more clear by considering
the sixth-order diagram

0
1 2

3
R

ÝÑ

`

P pR0q
˘2 `

P pR0 ´R1q
˘2 `

P pR1 ´R2q
˘2

`

P pR2 ´R3q
˘2 `

P pR3 ´Rq
˘2
P pRq

, (3.23)

where we sum R0, R1, R2 and R3 over the infinite lattice. On the one hand the sum-
mation for R0 and R3 can be cut off for |R0| ą rmax and |R3| ą rmax`|R|, hence the
terms pP pR0qq

2 and pP pR3´Rqq2 get small for large R0 and R3. On the other hand
the summation over R1 and R2 can only be terminated if the factors pP pR1 ´R2qq

2

and pP pR2´R3qq
2 are small enough, which is the case for |R1| ą 2rmax ě rmax`|R0|

and |R2| ą 2rmax ` |R| ě rmax ` |R3| ` |R|.

The way we determine the optimized basis trmu is to set the argument of one
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3.1 Generating skeleton diagrams

P equal to one of the rm. For the sixth-order diagram from before 3.23 the new basis
is

r0 “R0 , (3.24)
r1 “R0 ´R1 , (3.25)
r2 “R1 ´R2 , (3.26)
r3 “R2 ´R3 (3.27)

and the argument of the diagram becomes

0
1 2

3
R

ÝÑ

`

P pr0q
˘2 `

P pr1q
˘2 `

P pr2q
˘2 `

P pr3q
˘2

`

P p´r3 ´ r2 ´ r1 ` r0 ´Rq
˘2
P pRq

. (3.28)

Two additional aspects have to be considered, when we define a new rm. First it
must be linearly independent of all the other rn‰m and second we get even faster
convergence if the factor P prmq occurs multiple times instead of once. Therefore the
exact steps to determine the optimized basis trmu for a n-th order diagram are in
the table of figure 6.

1. Write the undirected diagram in its edge list form and that way that each line
goes from the vertex with lower number to the vertex with a higher number.

2. Sort the connections accordingly to how often they appear in the edge list.
Connections that appear most often in the edge list are sorted to the beginning
of the edge list and connections that appear once are sorted to the end of the
edge list.

3. The difference of the vertices in the first connection becomes rm with m “ 0.

4. The difference of the vertices in the next connection is set to rm`1.

5. If the vectors r0 . . . rm`1 are linearly independent, then raise m by one and else
keep m constant.

6. Repeat steps four and five until m is equal to n´ 3.

Figure 6: Steps to determine the new basis trmu

Step two ensures that the potency of P prmq are as high as possible and step five en-
sures that the basis trmu is linearly independent. Finally step six aborts the algorithm,
when we have the n´2 linear independent rm for the n-th order diagram. The idea of
choosing a new basis in this way is influenced by the work of Gulacsi and Gulacsi [10].
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3 Numerical investigation

Here is one final remark to the optimized basis trmu. The best way to choose
trmu depends on how the numerical summation is done. We choose to approx-
imate the exact summation by summing each rm over |rm| ď rmax and for this
approximation our choice of trmu appears to be convenient.
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3.2 Input data for the C programs

3.2 Input data for the C programs
Next the actual output of the Mathematica program from the previous section 3.1
will be discussed for the one dimensional case up to order four. Translating the
results from the ”Projektarbeit” [8] into C code was part of this thesis. The algorithm
produces a header file with the following content.
stat ic i n l i n e double pow2( double x ){ return x∗x ;}

stat ic i n l i n e double pow3( double x ){ return x∗x∗x ;}

double order1 ( int R, int r [ ] , double G[ ] , int GMax)
{

int R0 = (GMax´1)/2;
return Ǵ[ R0 ] ;

}

double order2 ( int R, int r [ ] , double G[ ] , int GMax)
{

int R0 = (GMax´1)/2;
return ´pow3(G[R+R0 ] ) ;

}

double order3 ( int R, int r [ ] , double G[ ] , int GMax)
{

int R0 = (GMax´1)/2;
return ´2∗G[R+R0]∗pow2(G[R+R0́ r [ 0 ] ] ) ∗ pow2(G[ R0+r [ 0 ] ] ) ;

}

double order4 ( int R, int r [ ] , double G[ ] , int GMax)
{

int R0 = (GMax´1)/2;
return ´(G[R+R0]∗G[R+R0́ r [ 1 ] ] ∗G[R+R0́ r [0] ´ r [ 1 ] ] ∗G[ R0+r [ 1 ] ]

∗G[ R0+r [0 ]+ r [ 1 ] ] ∗ pow2(G[ R0 +r [ 0 ] ] ) )
Ǵ[R+R0+r [ 0 ] ] ∗G[R+R0́ r [ 1 ] ] ∗G[´R+R0́ r [0 ]+ r [ 1 ] ]
∗pow2(G[ R0+r [ 0 ] ] ) ∗ pow2(G[ R0+r [ 1 ] ] )

´3∗G[R+R0]∗pow2(G[ R0+r [ 0 ] ] ) ∗ pow2(G[ R0+r [ 1 ] ] )
∗pow2(G[´R+R0́ r [0 ]+ r [ 1 ] ] ) ;

}

For order one to three this defines functions, that return the value of the diagram
for a given lattice vector ’R’ and a list of lattice vectors ’r’. In case of order four the
function returns the sum of the three diagrams times their weights. The functions
of higher orders, which are not shown here, also sum up the diagrams times their
weights, this has the advantage of performing the lattice summation for all diagrams
of one order at the same time instead of doing the summation for each diagram
separately. The list ’G’ in one dimension contains the values of P pRq, in which

GrR `R0s “ P pRq . (3.29)
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The integer ’GMax’ is the length of the list ’G’ in one dimension. For two dimensions
the list ’G’ is a one dimensional object, but it has to incorporate the values for a two
dimensional lattice. For the two dimensional lattice ’GMax’ is the number of allowed
x-values. The length of ’G’ for two dimension is ’GMax2’, because there are ’GMax’
allowed x-values and as many y-values. For example the second-order function for
two dimensions is
double order2 ( int R[ 2 ] , int r [ ] [ 2 ] , double G[ ] , int GMax)
{

int R0 = (GMax∗GMax´1)/2;
return ´pow3(G[R[ 0 ] ∗GMax+R[1]+R0 ] ) ;

}

and the lattice integer ’R’ and ’r[m]’ from one dimension become integer lists of
length two. The first entry is the x-value and the second is the y-value. The different
P are in the following way

Grx ˚GMax` y `R0s “ P px, yq (3.30)

inserted in the list ’G’. For this thesis the functions up to order seven for one and
two dimensions were generated. To generate the diagrams of higher orders our code
described in previous section needs additional optimization.

The static inline definitions of ’pow2(x)’ and ’pow3(x)’ increase the performance of
the program compared to the regular exponential function from the math package
’pow(x,y)’, because the ’pow(x,y)’ works for arbitrary doubles ’x’ and ’y’.
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3.3 General procedure for numerical approach
Our aim is to evaluate the GWF in high order diagrammatic expansions numerically
in one and two dimensions. We have two different diagrammatic expansions the
first by Metzner and Vollhardt [1][2][3] and the second by Gebhard [4]. These two
diagrammatic expansions are similar and have the same structure. In this section the
general procedure of evaluating these two expansions numerically will be discussed.
Further we insert the Fermi sea as the uncorrelated state in both formalisms and get
the formula, which get actually inserted in the algorithms.

The general idea is that we have a self-consistency loop for P pRq, SpRq and S˚pRq.

vmpRq “
ř

r0,...,rm´2
fmpR, r0, . . . , rm´3, P q

S˚pRq “
8
ř

m“1
pg2 ´ 1qmvmpRq

SpRq “ S˚pRq `
ř

Ri,Rj

S˚pR ´RiqP
0pRi ´RjqSpRjq

P pRq “ P 0pRq `
ř

Ri,Rj

P 0pR ´RiqSpRi ´RjqP
0pRjq

The step in the self-consistency loop displayed at the top is to sum the diagrams
of order m times their weights over the lattice. The function fm is the sum of the
skeleton diagrams of order m times their weights. So fm corresponds exactly to
the function generated in the last chapter 3.2. The lines in the diagrams stand for
a P . The values vmpRq have to be evaluated for every natural number m and for
every lattice vector R. To evaluate the exact vmpRq we need P pRq for all lattice
vectors. The next step in the self-consistency loop is to sum all the values vmpRq
times pg2 ´ 1qm up to gain the proper self-energy S˚pRq. The third step is to solve
the Dyson equation. The Dyson equation is a linear system of equations for SpRq
and the dimension of this linear system of equation is the number of lattice vectors.
The final step is to calculate the dressed line P pRq from the self-energy SpRq by
summing twice over the lattice. The P pRq again is inserted in the first step the
diagram evaluation.
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This set of equations is exact, but we need P pRq, SpRq or S˚pRq to calculate
the other quantities. Our approach is that we initially set

P
p0q
pRq “ P 0

pRq (3.31)

and then go through the self-consistency loop n times until P pRq, SpRq and S˚pRq
converge, i.e.,

P
pn´1q

pRq «P pnqpRq , (3.32)
Spn´1q

pRq «SpnqpRq , (3.33)
S˚pn´1q

pRq «S˚pnqpRq . (3.34)

The self-consistency loop we cannot iterate exactly because we have an infinite
number of lattice sites and the computer cannot do infinite sums or solve a linear
system of infinite equations numerically. So we introduce three different cutoff
parameters mmax, rmax and Rmax. The first cutoff parameter mmax determines the
maximal order of the skeleton diagrams, so the sum for the proper self-energy over
m from one to infinity will be shortened to one to mmax. The program from the
previous chapter 3.2 has generated fm up to order seven, so the highest order for
mmax in this thesis is seven.

S˚pRq «
mmax
ÿ

m“1
pg2
´ 1qmvmpRq (3.35)

The parameter rmax restricts the summation of the diagram evaluation. For the one-
dimensional lattice the summation parameters r0, . . . , rm´2 run each from ´rmax to
rmax. For the two dimensional lattice the x-value and the y-value for each r0, . . . , rm´2
run from ´rmax to rmax. Why we choose this summation over a quadratic plane, and
not over for example an area of a circle, will be discussed in the chapter about the
program for the two-dimensional lattice.

vmpRq «
rmax
ÿ

r0,...,rm´2“´rmax

fmpR, r0, . . . , rm´2, P q (3.36)

The last parameter Rmax restricts for which lattice vectors R the diagrams are
evaluated. For one dimension vmpRq will be calculated for R “ 0 to R “ Rmax, the
values for R “ ´Rmax to R “ ´1 do not need to be evaluated, due to the symmetry
of the system.

vmpRq “ vmp´Rq (3.37)
In two dimensions the x-value of R runs from zero to Rmax for the evaluation of
vmpRq and due to the symmetry of the two dimensional system it is enough to run
the y-value of R from zero to the x-value for each x-value.

vmpx, yq “ vmpmaxp|x|, |y|q,minp|x|, |y|qq (3.38)
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The functions for the uncorrelated state P 0px, yq are also only calculated for |x| ď
Rmax and |y| ď Rmax.

The scheme presented above is formulated for Metzner and Vollhardt’s formalism,
but can be applied exactly identical to Gebhard’s formalism, when we replace

P 0
pRq ÝÑ P̃ 0

pRq (3.39)
S˚pRq ÝÑ S̃˚pRq (3.40)
SpRq ÝÑ S̃pRq (3.41)
P pRq ÝÑ P̃ pRq (3.42)

pg2
´ 1q ÝÑxi ” x . (3.43)

The function P 0pRq is the Fourier transform of the occupation number of states in
k-space for the uncorrelated state

xn̂kσy0 ” xΨ0|ĉ
:

kσ ĉkσ|Ψ0y “
1
L

ÿ

R
e´ik¨RP 0

pRq “
"

1 for εk ď εF
0 else . (3.44)

The discrete convolution of P 0pRq with itself simplifies for the Fermi sea.

ÿ

Rj

P 0
pR ´RjqP

0
pRjq “

1
L2

ÿ

Rj

ÿ

k1,k2

eik¨pR´Rjqeik¨Rjxn̂k1σy0xn̂k2σy0 (3.45)

“
1
L

ÿ

k1

eik¨Rxn̂k1σy0xn̂k1σy0 (3.46)

“
1
L

ÿ

k1

eik¨Rxn̂k1σy0 “ P 0
pRq (3.47)

Using this analytic result one of the two summations in P in Metzner’s formalism
can be evaluated analytically if we replace the summation of Rj with the summation
of Rl “ Ri ´Rj.

ÿ

Ri,Rj

P 0
pR ´RiqSpRi ´RjqP

0
pRjq “

ÿ

Rl

SpRlq
ÿ

Ri

P 0
pR ´RiqP

0
pRi ´Rlq

(3.48)
“

ÿ

Rl

SpRlqP
0
pR ´Rlq (3.49)
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P and P (equation 2.81) in Metzner and Vollhardt’s formalism simplify for the Fermi
sea to:

P pRq “P 0
pRq `

ÿ

Rl

SpRlqP
0
pR ´Rlq (3.50)

P pRq “P 0
pRq ´

SpRq
pg ` 1q2 p1´ δR,0q

`
ÿ

Rl

SpRlqP
0
pR ´Rlqp1´

2
g ` 1 ´

pg ´ 1qδR,0

g ` 1 q (3.51)

Also in Gebhard’s formalism we can analytically do the same summations, because
for the Fermi sea

P̃ 0
pRq “ P 0

pRqp1´ δR,0q “ P 0
pRq ´

n

2 δR,0 . (3.52)

The parameter n is the filling of the Fermi sea and it varies from zero to two. Zero
means that there are no electrons in the system and if n is equal to two, then every
site is occupied twice with one up and one down electron. The dressed lines P̃ pRq in
Gebhard’s formalism become

P̃ pRq “ P̃ 0
pRq ` δR,0

n

2 p1´
n

2 qS̃pRq ` p1´ nq
ÿ

Rl

S̃pRlqP̃
0
pR ´Rlq . (3.53)

Due to the translational invariance of the system and the symmetry of the spin the
values

xi ” x ,
?
qiσ ”

?
q , αi ” α (3.54)

become independent of the lattice site and their spin. These three values solely
depend on the filling n and the Gutzwiller parameter g.

G “
a

1` p1´ g2qpn´ 2qnq (3.55)

x “
4p1´Gq

pn´ 2qnp1`Gq (3.56)

α “
p1´ nqpG` 1q

2pg `Gq (3.57)

q “ 21` p1` gqnpn´ 2q ´G
p1` gq2npn´ 2q (3.58)
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The expectation values (equation 2.138, 2.139, 2.140) in Gebhard’s formalism then
become

P pR ‰ 0q “ q
˜

P̃ 0
pRq ` pα2

`
n

2 p1´
n

2 qqS̃pRq ` p1´ n´ 2αq
ÿ

Rl

S̃pRlqP̃
0
pR ´Rlq

¸

,

(3.59)

P pR “ 0q “ n

2 ´ S̃p0q
ˆ

1
x
`
n

2 p1´
n

2 q
˙

´ p1´ nq
ÿ

Rl

S̃pRlqP̃
0
pRlq , (3.60)

xD̂yg “
´

1` xp1´ n

2 q
2
¯

˜

n2

4 ´
n

x
S̃p0q ´ 4´ xn2

4x
ÿ

Rl

S̃pRlqP̃
0
pR ´Rlq

¸

.

(3.61)
For the GWF exists an analytical relation, which we later use to check the quality of
the numerical results. In Metzner’s paper [3] is the formula

năσ “ nσ ´
1´ g
1` g pnσnσ ´ xD̂ygq . (3.62)

The value năσ is defined as

năσ ”
1
L

ÿ

k

xn̂σygxn̂σy0 “
ÿ

R
P pRqP 0

pRq . (3.63)

Because our system is symmetric in the spin,

nσ “
n

2 . (3.64)

The relation therefore is
ÿ

R
P pRqP 0

pRq “
n

2 ´
1´ g
1` g p

n2

4 ´ xD̂ygq . (3.65)

Using the identity
n

2 “ P 0
p0q “

ÿ

R
P 0
pRqP 0

pRq (3.66)

the relation can be rewritten as

0 “
˜

ÿ

R
P 0
pRqpP pRq ´ P 0

pRqq

¸

`
1´ g
1` g p

n2

4 ´ xD̂ygq . (3.67)

As a measurement of the combined quality of xD̂yg and P pRq we do the summation
numerically up to the cutoff Rmax and normalize the result,

errCheck “

ˇ

ˇ

ˇ

ˇ

ˇ

˜

ř

|R|ďRmax

P 0pRqpP pRq ´ P 0pRqq

¸

`
1´g
1`g p

n2

4 ´ xD̂ygq

ˇ

ˇ

ˇ

ˇ

ˇ

n
2 `

1´g
1`g

n2

4
. (3.68)

45



3 Numerical investigation

If errCheck of our simulation is of the magnitude of 1 or greater, then the results from
this simulation are not trustworthy. If errCheck is small and close to zero, then this is
an indication that our results are quantitatively good.
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3.4 Analytic solution for the one-dimensional chain
We need the analytic solution in one dimension to compare it to our numerical
investigation in one dimension. The analytic solution was published first in [3], but
the results presented here are from paper [11].

The analytic double occupation is

xD̂yg “
g2

2p1´ g2q2

`

´ lnp1´ p1´ g2
qnq ´ p1´ g2

qn
˘

. (3.69)

The density matrix Pσij “ P pRi ´Rjq is not directly accessible, but we calculate it
by numerical Fourier transformation from xn̂kσyg.

P pRq “
1
L

ÿ

k

xn̂kσyge´ikR “

1
2
ż

´ 1
2

dk xn̂kσyge´i2πkR (3.70)

“ 2

1
2
ż

0

dk xn̂kσyg cosp2πkRq (3.71)

In the paper [11] the one-dimensional Brillouin zone is normalized to have the length
one. In the rest of this thesis except for this section the Brillouin zone has the volume
p2πqd (d “ dimension).

The occupation number xn̂kσyg has a discontinuity at the Fermi surface of the
uncorrelated state.

xn̂kσyg “ ΘpkF ´ kqn
ă
kσ `Θpk ´ kFqn

ą
kσ with kF “

n

4 (3.72)

The function inside the Fermi surface is

năkσ “ 1´ 1´ g
1` g

n

2 `
g2

p1` gq2

ˆ

R0p
4k
n
, p1´ g2

qnq ´ 1
˙

(3.73)

and outside the Fermi surface the function is

nąkσ “ ´
1´ g
1` g

n

2 `
1

p1` gq2

ˆ

´
1
2 lnp1´ p1´ g2

qnq

`Q0p
4k ´ 2n

n
, p1´ g2

qnqQ0p
4k ´ 2n

n
, p1´ g2

qnq

˙

. (3.74)

The auxiliary function

R0 “
4

π
a

p2´ zq2 ´ x2z2
Kp

z
?

1´ x2
a

p2´ zq2 ´ x2z2
qΘp1´ |x|q (3.75)
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contains the complete elliptic integral of the first kind

Kpkq “

π
2
ż

0

dφ 1
a

1´ k2 sinpφq
. (3.76)

The second auxiliary function Q0px, zq can be expressed in terms of R0px, zq and its
integral.

Q0px, zq “
´

W0px, zq `
z

2 rp1´ xqR0px, zq `R1px, zqs
¯

Θp1´ |x|q (3.77)

W0px, zq “
x´ 1

2 R0px, zq `
z ´ 2

4 R1px, zq `
zpz ´ 1q

2
BR1px, zq

Bz
(3.78)

R1px, zq “

x
ż

1

dyR0py, zq (3.79)

The numerical evaluation of these formulas we do with Mathematica, the complete
elliptic integral of the first kind is available there as a function, which can be calculated
with arbitrary numerical accuracy. The function R1px, zq and its derivative with
respect to z we evaluate numerically as a function of x by doing the integration
numerically for fixed z “ p1´ g2qn and variable x (´1 ă x ă 1). Because we only
integrate a well behaved one dimensional function, this numerical integration can be
done by standard techniques with very high accuracy. The integration of the Fourier
transformation we also do numerically, because the function Q0 we only access by
a numerical approximation. This one-dimensional integral will also be calculated
by standard techniques with high accuracy as long R is not too great. For large
R (R " 1) the cos-function is highly oscillating and consequently the numerical
integration becomes less accurate. The results from this evaluation can be considered
as numerically exact.
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3.5 Program for the one-dimensional chain

3.5 Program for the one-dimensional chain
In this section the implementation for the one-dimensional lattice is presented as
a test of our numerical approach. We can compare our results with the analytical
solution and determine for given filling n and Gutzwiller parameter g, which cutoff
parameters mmax, rmax and Rmax are necessary to produce proper results.

The function P 0pRq in one dimension is extracted easily by Fourier transforma-
tion of xn̂kσy0.

P 0
pRq “

π
ż

´π

dk
2π xn̂kσy0e´ikR “

kF
ż

´kF

dk
2π e´ikR “

kF
ż

0

dk
π

cospkRq “ sinpRkFq

πR
(3.80)

The Fermi wave vector kF is coupled to the filling n.

n

2 “
π
ż

´π

dk
2π xn̂kσy0 “ P 0

pR “ 0q “ kF

π
ñ kF “

πn

2 (3.81)

In two dimensions P 0pRq is a more complicated integral than in one dimension and
cannot be computed easily for |R| " 1. For that reason in two dimensions we use a
cutoff for P 0pRq and set

P 0
px, yq “ 0 for maxp|x|, |y|q ą Rmax . (3.82)

In one dimension we also do this cutoff for P 0pRq in order to transfer the estimated
errors to two dimensions. Now we have all prerequisites to discuss the program in
one dimension. Parts of the programs will be discussed in the following. We have
two separate programs, one that calculates in Metzner and Vollhardt’s formalism
and the other in Gebhard’s formalism. The input parameters of both programs are
g , n , Rmax ” RMax , rmax ” rMax , mmax ” mMax and nmax ” nMax . (3.83)

The first five parameters are familiar from the previous chapter, the last parameter
nmax is the number of iterations. Thus the self-consistency cycle will be performed
nmax times. The two programs differ only in the definition of the intern functions,
but the main function is identical, so it is convenient to discuss both together. The
programs in two dimensions work the same way except some parts are bit more
complicated due to the higher dimension.

The functions S˚pRq, SpRq and P pRq, which get calculated during the self-consistency
loop, get each an array of length 2Rmax` 1 to store their values from ´Rmax to Rmax.

SpRq ÝÑ array SrR `R0s , (3.84)
S˚pRq ÝÑ array S starrR `R0s , (3.85)
P pRq ÝÑ array overline P newrR `R0s (3.86)
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The values of function SpRq are stored at position R`R0 of its array and the integer
R0 “ Rmax points to the middle of the array. The array of P pRq, which gets inserted
in the beginning of the self-consistency loop, has to be longer than the other arrays.
For example in the diagram of equation 3.28, we have the term

P p´r3 ´ r2 ´ r1 ` r0 ´Rq . (3.87)

The array
P pRq ÝÑ array overline P oldrR `R0longs (3.88)

has to be long enough to contain the values, for all combinations ofR in´Rmax, . . . , Rmax
and r0, r1, r2 and r3 in ´rmax, . . . , rmax. So the array length have to be greater
then 2pRmax ` 4rmaxq ` 1. We have chosen the length 2pRmax `mmaxrmaxq ` 1 and
R0long “ Rmax`mmaxrmax, which works fine for mmax “ 7 and several Rmax and rmax.

The complete main program is printed in the appendix (page 79). It begins by
including all packages, reading the input parameters and allocating space for the
arrays. Especially we make an array called ’order’. This array contains the functions
from section 3.2. The self-consistency loop is the heart of the program and is printed
in the following:

int R;
for (R=́ RMax; R<=RMax; R++){

Pquer [R+R0long ] = P0(R, n ) ;
} ;
double X = x (g , n ) ;

int i t e r ;
for ( i t e r =1; i t e r <=nMax ; i t e r ++){

// s e t t i n g arrays back to zero
for (R=́ RMax; R<=RMax; R++){

a r r a y S s t a r [R+R0 ] = 0 . ;
ar ray S [R+R0 ] = 0 . ;
a r ray ove r l i n e P new [R+R0 ] = 0 . ;

}

// order mMax to 3
int m;
for (m=mMax; m>=3; ḿ ´){

double ∗sumHelp = c a l l o c (RMax+1, s izeof ( double ) ) ;
double multHelp = pow(X, ( ( double ) m) ´1 . ) ;
{
#pragma omp p a r a l l e l for
for (R=0; R<=RMax; R++){

int r [m´2] ;
r e c u r s i v e (&sumHelp [R] , R, m´3, r , rMax ,

a r r a y o v e r l i n e P o l d , 2∗R0long+1, order [m] ) ;
}
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}
for (R=0; R<=RMax; R++){

a r r a y S s t a r [R+R0 ] +=multHelp∗sumHelp [R ] ;
}

}

// second order
int r [ 1 ] ;
i f (mMax>=2){

for (R=0; R<=RMax; R++){
a r r a y S s t a r [R+R0 ] += X∗ order [ 2 ] ( R, r , a r r a y o v e r l i n e P o l d ,

2∗R0long +1);
}

}

// f i r s t order
i f (mMax>=1){

a r r a y S s t a r [0+R0 ] += order [ 1 ] ( 0 , r , a r r a y o v e r l i n e P o l d ,
2∗R0long +1);

}

//make a r r a y S s t a r symmetric
for (R=1; R<=RMax; R++){

a r r a y S s t a r [´R+R0 ] = a r r a y S s t a r [R+R0 ] ;
} ;

// c a l c array S from a r r a y S s t a r by Dyson equat ion
ca l cS f romSstar ( a r r ay S s t a r , RMax, g , n , array \ S ) ;

// c a l c ar ray over l ine P new from array S
calcOverlinePFromS ( array S , RMax, g , n , a r ray ove r l i n e P new ) ;

// f o r the next i t e r a t i o n s e t a r r a y o v e r l i n e P o l d
// equa l to ar ray over l ine P new
for (R=́ RMax; R<=RMax; R++){

a r r a y o v e r l i n e P o l d [R+R0long ] = ar ray ove r l i n e P new [R+R0 ] ;
}

}

The first step is to initialize ’array overline P old’ with ’P0(R,n)’. ’P0(R,n)’ is P 0pRq
in Metzner and Vollhardt’s formalism and P̃ 0pRq in Gebhard’s formalism. The
function ’x(g,n)’ is g2 ´ 1 in the first formalism and xpg, nq from equation 3.56 in
the second formalism.

Before calculating the arrays for S˚, S and P we clear the arrays and then start
the self-consistency loop with the evaluation of the diagrams. We first evaluate the
highest-order diagrams and then work our way down to the first order, because
the contribution of the diagrams decreases with increasing order, and one should
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always start with the smallest terms and end with the bigger terms in a numerical
summation to decrease rounding errors. The next optimization in calculating S˚ is
that we calculate S˚

X instead of S˚. In the equations for xD̂yg and P pRq appears the
term S

X and if we divide S by a small ’X’, we get huge rounding errors. In order to
calculate S

X with the Dyson equation we initially need S˚

X .

Evaluating the diagrams

The first and second order diagrams get evaluated separately from the higher orders,
because there no summation over the lattice is necessary. The first order diagram
has a factor δ0,R and thus this diagram contributes only to S˚p0q. More interesting
is the evaluation of the diagrams of order three and higher. We have to evaluate the
diagrams for R in t0, . . . , Rmaxu. In order to speed up this code block we parallelize
this for-loop with the expression ”#pragma omp parallel for”. So for different R the
evaluation of the diagrams is distributed to different cores or CPUs of the system,
if available. We choose to parallelize explicitly only this code block, because it is
the computationally most expensive part and the parallelization on this level can
be done very easily. Instead the parallelization could alternatively be done in the
summation, which does the function ”recursive(. . .)”.

The function ”recursive(. . .)” does the following summation

sumHelprRs “
rMax
ÿ

rr0s“´rMax
. . .

rMax
ÿ

rrm´3s“´rMax
orderrmspR, rr0s, . . . , rrm´ 3s,

array overline P oldq (3.89)

as proposed in equation 3.36. Such nested summation for ’m-2’ summation variables
can be programmed by ’m-2’ nested for-loops. The issue here is that the number ’m-3’
is a variable and not fixed. So the program must be enabled to nest for-loops by itself
and this is done here by the function ”recursive(. . .)”. The function ”recursive(. . .)”
makes a for-loop and in each iteration of the for-loop the function calls itself, but
counts the integer ’n’ down by one and writes in the array entry ’r[n]’ a lattice position.
The number ’n’ must be in the first call ’m-3’, then the function ”recursive(. . .)” calls
itself recursively until ’n’ is equal to zero and finally there are ’m-2’ nested for-loops
and the summation is executed. Next is the exact code of ”recursive(. . .)” displayed.
void r e c u r s i v e ( double ∗ returnValue ,

int R,
int n ,
int r [ ] ,
int rMax ,
double a r r a y o v e r l i n e P [ ] ,
int GMax,
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ORDER FUNC order func
)

//n = l e n g t h o f the array r [ ] = ḿ 3
{

i f (n>0) {
int i ;
for ( i = ´rMax ; i <= rMax ; i ++){

r [ n ] = i ;
r e c u r s i v e ( returnValue , R, n ´1, r , rMax ,

a r r ay ove r l i n e P , GMax, order func ) ;
}

}
else {

int i ;
for ( i = ´rMax ; i <= rMax ; i ++){

r [ n ] = i ;
∗ returnValue = ∗ returnValue

+ order func (R, r , a r r ay ove r l i n e P ,
GMax) ;

}
}

}

Solving the Dyson equation

The consecutive step in the self-consistency loop is to calculate SpRq from S˚pRq by
the Dyson equation. The Dyson equation reads

SpRq “ S˚pRq `
ÿ

Ri,Rj

S˚pRiqP
0
pRi ´RjqSpRjq . (3.90)

We rewrite it as a system of linear equation for SpRq
X

and cut the summations for
|Ri|, |Rj| ą Rmax.

Rmax
ÿ

Rj“´Rmax

«

δR,Rj ´X

˜

Rmax
ÿ

Ri“´Rmax

S˚pRiq

X
P 0
pRi ´Rjq

¸ff

SpRjq

X
“
S˚pRq

X
(3.91)

SpRq and S˚pRq are invariant under inversion of space, so the linear system in the
upper equation can be reduced from 2Rmax` 1 for R P t´Rmax, . . . , Rmaxu equations
to Rmax ` 1 equation for R P t0, . . . , Rmaxu.

Rmax
ÿ

Rj“0
MR,Rj

SpRjq

X
“
S˚pRq

X
(3.92)

The matrix M with the entries MR,Rj is

M “

Rmax
ÿ

R“0
eReRT ´

Rmax
ÿ

R1“´Rmax

PH
pR ´R1qeRe|R1|T . (3.93)
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by the use of the abbreviation

PH
pRq “ X

Rmax
ÿ

R1“´Rmax

S˚pR1q

X
P 0
pR1 ´Rq (3.94)

and the factor eReR1T , which is the pRmax ` 1q ˆ pRmax ` 1q matrix with every entry
equal to zero except for the entry in row R ` 1 and column R1 ` 1 and that is one.
There exist several packages to solve linear equations, we use the LAPACK package
for solving the linear equation.

After solving the Dyson equation we calculate P pRq by equation 3.51 in Metzner’s
formalism or by 3.53 in Gebhard’s Formalism. Finally the new values for P pRq are
copied from the new array to the old array and the self-consistency cycle is repeated
nmax times.

Results

In the previous part the functionality of the programs in one dimension was examined
and now their results will be discussed. We have three different quantities to analyze,
the double occupation xD̂yg, the density matrix P pRq and errCheck from section
3.3. For the first two quantities we are especially interested in their deviation from
the analytic solution to determine the quality of our simulation. For the double
occupation the error is defined as

errxD̂yg “

ˇ

ˇ

ˇ
xD̂yanalytic

g ´ xD̂ynumeric
g

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
xD̂yanalytic

g

ˇ

ˇ

ˇ

. (3.95)

Analogously the deviation for the density matrix is

errP “

Rmax
ř

R“0

ˇ

ˇP pRqanalytic ´ P pRqnumeric
ˇ

ˇ

Rmax
ř

R“0
|P pRqanalytic|

. (3.96)

In figure 7 are the results of Metzner and Vollhardt’s formalism shown for variable
number of iterations nmax and the remaining parameters are fixed. First of all we
are interested in the convergence speed of the self-consistency cycle. All graphs in
figure 7 are converged after the fourth iteration. So choosing the parameter nmax
in the range of five to ten is sufficiently large to ensure convergence for these given
parameters.
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Figure 7: Metzner and Vollhardt’s formalism for variable number of iterations nmax
in one dimension at fixed g “ 0.9, n “ 0.95, Rmax “ 10 and rmax “ 10
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Next we are interested in the trends of the errors. As expected all error graphs
decreases to a plateau. From order one to three the errors decrease and this is
good, because we expected a lowering of the error by using diagrams up to higher
orders. For order four and higher this is not the case, because the errors for order
four to seven a nearly identical and for errxD̂yg and errCheck the error even increases
compared to the third order. In conclusion it is not reasonable to use higher order
diagrams than order three in this numerical approach for the formalism of Metzner
and Vollhardt.

Next follows the discussion of our results with Gebhard’s formalism. In figure
8 are the corresponding graphs for this formalism. Similarly the convergence of
the self-consistency cycle is reached after the fifth iteration. We investigated the
convergence rate for various parameters and especially g closer to zero and after five
to six iterations the convergence was always reached. Figure 9 confirms this claim by
presenting the convergence for g equal to 0.3. For the further numerical investigation
we set the parameter nmax equal to ten to ensure convergence for each point in each
following plot.

The errors for double occupation and density matrix in general decrease with the
increase of the used order in figures 8 and 9. This is the behavior we expected and
we can utilize this fact in the investigation of two dimensions by constructing an
error estimator. But the error does not decrease evenly from order one to order
seven, instead it decreases significantly from an odd order the next higher even order
and only slightly from an even order to the following odd order. This anomaly is
observed in all plots for Gebhard’s formalism of the one-dimensional lattice. In some
plots are the errors for the even order even smaller than the error of the next higher
odd order. Thus, it is advising to perform the calculations up to an even order to
reach high accuracy.
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Figure 8: Gebhard’s formalism for variable number of iterations nmax in one dimension
at fixed g “ 0.9, n “ 0.95, Rmax “ 10 and rmax “ 10
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Figure 9: Gebhard’s formalism for variable number of iterations nmax in one dimension
at fixed g “ 0.3, n “ 0.95, Rmax “ 10 and rmax “ 10
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Figure 10: The expansion parameter xpg, nq in Gebhard’s formalism

In our discussion we focus on Gebhard’s formalism, due to the fact that it achieves
clearly higher accuracy than the other formalism. For example the errors in figure 8
are significantly smaller than those in figure 7 and this discrepancy increases further
for smaller g. When we compare both expansion parameters g2 ´ 1 and xpg, nq, this
behavior is remarkable, because the Gutzwiller parameter g takes values between
zero and one, thus g2 ´ 1 takes values between minus one and zero. On the contrary
xpg, nq takes values between minus four and zero, the behavior of xpg, nq is displayed
in figure 10. An explanation for the advantage of Gebhard’s formalism over the other
one is that Gebhard’s expansion starts from the Gutzwiller approximation, which is
a much closer to the exact solution than the uncorrelated state.

In contrast to the errors of double occupation and density matrix the error errCheck
is nearly constant for all orders. The zeroth order in Gebhard’s formalism is the
Gutzwiller approximation and for the Gutzwiller approximation errCheck is exactly
zero in the limit of Rmax Ñ 8. The first order diagram in Gebhard’s formalism
has no contribution to the self-energy, when we use the non-dressed lines. Due
to the fact that we start the self-consistency cycle with the non-dressed lines, the
calculations with mmax “ 1 are identical to the Gutzwiller approximation. The
deviation from zero in the errCheck plots for mmax “ 1 are caused solely by the cutoff
in the summation of equation 3.68. So even if the calculations with higher order
diagrams are closer to the analytic solution, we cannot expect a smaller deviation
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from zero in the errCheck diagrams than as the first order. Thus it is a positive signal,
that in our approach the lines for different orders lie on top of each other in the
errCheck plots.
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Figure 11: Gebhard’s formalism for variable Rmax at fixed g “ 0.8, n “ 0.95, rmax “

10 and nmax “ 10

The dependence of errCheck on the cutoff parameter Rmax is explicitly shown in figure
11. There errCheck decreases rapidly for small Rmax and later on it still decreases
steadily for increasing Rmax. The error of the double occupation shows also a de-
clining behavior for rising Rmax. But the different orders decline each to a minimal
error at a certain Rmax. The minimal error decreases for increasing order, but also
the Rmax to reach each minimum increases with the order. We conclude that higher
order diagrams unfold their full advantage, only if Rmax is sufficiently large.

After the variation of Rmax we examine the impact of the parameter rmax on our
results. The error of P is affected very little by rmax ě 2, but the error of xD̂yg is
more influenced by it as seen in figure 12. For the diagrams of the first two orders
happens no summation, so these two orders cannot be affected by the variation of
rmax. But also for the third order rmax seems to have nearly no impact. For the
four higher orders are these two errors generally sinking for rising rmax, but for rmax
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equal to three or five the error of xD̂yg gets especially small for the sixth and seventh
order. For rmax ě 6 the error in xD̂yg also reaches a fix point. In conclusion it is not
necessary to pick rmax greater than six for this set of parameters, because the error
will only decrease by an insignificant amount.
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Figure 12: Gebhard’s formalism for variable rmax for g “ 0.8, n “ 0.95, Rmax “ 10
and nmax “ 10

We are most interested in the quality of our approach for variable g and n near half
filling. The double occupation for variable g for several fillings n is plotted in figure
13. There is a significant distance between the points of mmax “ 1 and the analytic
solution except for g very close to one. The values for mmax “ 2 and higher orders
are quite close to the analytic curve for n not too close to one or g greater then one
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half. Only in the region of n close to one (n “ 0.99 or n “ 0.95) and g smaller than
one half exists a significant discrepancy between analytic solution and our numerical
results. For most values of g increasing the used order decreases the error significantly.

In figure 14 the errors for n “ 0.95 and variable g are shown in detail. All er-
rors are falling through several powers of ten, when g goes from zero to one. For
double occupation and density matrix the errors decrease from order one to seven
and only in the region of g smaller than 0.2 occurs some crossing of the lines. For
errCheck all lines lie again on top of each other, the only exception is again the region
of g smaller than 0.2. There the lines of the graph diverge slightly from each other.
In conclusion our approach works fine with Gebhard’s formalism as long g is not to
close to zero (g ă 0.2) and additionally the filling is close to one. If the filling is
lower than 0.8 the code produces proper results for all g.

For calculations at exactly half filling we advise to do this limit analytically at
the mathematical level, because most equations simplify in this limit. Additionally
there is an analytic solution available for P 0px, yq at half filling. Including this
analytic solution speeds up to the code and will increase the accuracy.
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Figure 13: Gebhard’s formalism for variable g for several n at fixed Rmax “ 15,
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Figure 14: Gebhard’s formalism for variable g at fixed n “ 0.95, Rmax “ 15, rmax “ 5
and nmax “ 10

64



3.6 Program for the square lattice

3.6 Program for the square lattice
In one and two dimensions the numerical implementation is very similar and because
of that we will focus on the differences. First the calculation of P 0px, yq is more
complicated than the calculation of P 0pRq and second we have more identical terms
due to the symmetry of the system. This symmetry can be highly exploited while
solving the Dyson equation.

The two general changes from one to two dimensions are that the for-loops over
lattice site indices are replaced by two nested for-loops. These two nested for-loops
iterate over the two dimensional square lattice. The second change is the storing of
the arrays for S, S˚ and P . In one dimension these arrays are one-dimensional and
so the storing of the values is done in the natural way as described in the previous
section.

SpRq “ array SrR ` R0s (3.97)

The function SpRq is restricted to the values ´Rmax ď R ď Rmax. So the ”array S”
has the length 2Rmax`1 and R0 “ Rmax. Now we store the values of a two dimensional
function in an one-dimensional array. We restrict Spx, yq to ´Rmax ď x, y ď Rmax
and so the ”array S” has the length p2Rmax ` 1q2.

Spx, yq “ array Srxp2Rmax`1q`y`R0s with R0 “ 1
2
`

p2Rmax ` 1q2 ´ 1
˘

(3.98)

In the end of section 3.2 the storing of the two dimensional arrays is also mentioned.

Calculating P 0px, yq

The function P 0px, yq is

P 0
px, yq “

π
ż

´π

dkx
2π

π
ż

´π

dky
2π xn̂kσy0 cospkxx` kyyq . (3.99)

All states with an energy lower than the Fermi energy εF are occupied

xn̂kσy0 “

"

1 for ´ 2 pcospkxq ` cospkyqq ď εF
t

0 else (3.100)

The Fermi energy εF depends in our system only on the filling n and scales with the
hopping parameter t.

n

2 “ P 0
p0, 0q “

π
ż

´π

dkx
2π

π
ż

´π

dky
2π xn̂kσy0 (3.101)
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For half filling pn “ 1q these equations can be solved analytically. The Fermi energy
εF is zero.

P 0
px, y, n “ 1q “ ´ cospπxq ` cospπyq

π2px2 ´ y2q
(3.102)

The values for x “ y or x “ y “ 0 are also calculated correctly by the formula 3.102,
if you take the correct limit.

P 0
p0, 0, n “ 1q “ 1

2 , P 0
px, x, n “ 1q “ sinpπxq

2πx (3.103)

Below half filling we need to evaluate the integral in 3.99 numerically. In order to
use the standard techniques of one-dimensional numerical integration, which provide
us with very high accuracy, we transform the two-dimensional integral into an one-
dimensional one. xn̂kσy0 drops out in the integral, if the integration boundaries are
chosen correctly.

P 0
px, yq “

kFp0q
ż

´kFp0q

dkx
2π

kFpkxq
ż

´kFpkxq

dky
2π cospkxx` kyyq (3.104)

The Fermi surface kFpkq is

kFpkq “ arccos
´

´
εF

2t ´ cospkq
¯

. (3.105)

The integration over ky for (y ‰ 0) is executed analytically.

P 0
px, yq “

kFp0q
ż

´kFp0q

dkx
4π2y

psinpkxx` kFpkxqyq ´ sinpkxx´ kFpkxqyqq (3.106)

The argument of the integration is symmetric in kx and so it is sufficient to do the
integration from zero to kFp0q and multiply by two.

P 0
px, yq “

kFp0q
ż

0

dkx
2π2y

psinpkxx` kFpkxqyq ´ sinpkxx´ kFpkxqyqq (3.107)

The according numerical procedure is to choose a value between minus two and two
for the parameter εF

t
and and then to calculate the one dimensional integrals 3.107

for py ‰ 0q and the integral

P 0
p0, 0q “ n

2 “
kFp0q
ż

0

dkx
π2 kFpkxq (3.108)
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3.6 Program for the square lattice

for py “ x “ 0q and to determine the filling n numerically. Because P 0px, yq is
invariant under changing the sign of x or y or interchanging x and y, it is sufficient
to evaluate P 0px, yq solely for positive x and y and x ď y.

P 0
px, yq “ P 0

p´x, yq “ P 0
px,´yq “ P 0

py, xq (3.109)

To calculate P 0px, yq for´Rmax ď x, y ď Rmax it is sufficient to do 1
2pRmax`3qRmax`1

numerical integrations instead of p2Rmax ` 1q2. We do the numerical evaluation with
Mathematica and export the results to a header file for the C program.

Evaluating the diagrams

The self-energy S˚px, yq has the same symmetries as P 0px, yq, thus it is adequate
to evaluate the diagrams only for positive x and y and x ď y. The procedure to
evaluate the diagrams is identical to one dimension and on the program level we
replace the for-loops in the ”recursive” function by two nested for-loops. The for-loop
corresponds to the sum over one lattice vector ri. In one dimension we sum ri from
´rmax to rmax and in two dimensions we now sum its x- and y-component each from
´rmax to rmax. This equals a summation over a quadratic plane in space.

Next comes a short discussion why we sum over a quadratic area for the ri and not
over the area of a circle. A circle would enclose all points of the lattice up to its
radius. Due to this fact the area of a circle would be the right choice, if P px, yq
declines equally in all directions. We are investigating the two dimensional system
primarily for n close to half filling. The dressed lines P px, yq originate from the
non-dressed lines P 0px, yq and we expect the P px, yq to have a qualitatively similar
behavior to the P 0px, yq. For half filling the absolute value of P 0px, xq decreases
proportional to 1

x
(eq. 3.103) for the diagonal values and proportional to 1

x2 on the x-
or y-axis (eq. 3.102). Consequently, our choice of the summation area has to favor
the diagonal elements and this is achieved by the square area.

Dyson Equation

Spx, yq and S˚px, yq has the same invariants as P 0px, yq. They do not change, if
we interchange x and y or change the sign of one or two of them. We utilize this
fact when we solve the Dyson equation. Instead of a system of p2Rmax ` 1q2 linear
equations, we solve a system with only 1

2pRmax ` 3qRmax ` 1 linear equations. We
write the Dyson equation in the form

1
2 pRmax`3qRmax

ÿ

Rj“0
matrix MrRsrRjs vector SrRjs “ vector S starrRs , (3.110)
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3 Numerical investigation

in which the parameter R runs from zero to 1
2pRmax ` 3qRmax. The vector arrays

”vector S” and ”vector S star” have the length 1
2pRmax` 3qRmax` 1 and contain only

the independent values of Spx,yq
X

and S˚px,yq
X

. We stored the values in the following
way.

vector Sr s “ rSp0, 0q
X

,
Sp0, 1q
X

,
Sp1, 1q
X

,
Sp0, 2q
X

, . . . ,
SpRmax, Rmaxq

X
s (3.111)

Again we calculate with Spx,yq
X

instead of Spx, yq to eliminate rounding errors, if we
divide by a small value X. In order to get an arbitrary value Spx,yq

X
from the vector

array ”vector S”

Spx, yq

X
“ vector Srfpminp|x|, |y|q,maxp|x|, |y|qqs , (3.112)

we need to read the entry specified by the function fpa, bq.

fpa, bq “

˜

a
ÿ

x“1
1
¸

`

˜

b
ÿ

y“1

y
ÿ

x“0
1
¸

“ a`
b

2pb` 1q (3.113)

The final ingredient for the Dyson Equation is to create ”matrix M”. First we set it
equal to the identity matrix, with ones on the diagonal entries and zeros on every
other entry. Then the contributions from S and P 0 are added in the following code:
int L0H = 4∗RMax+1;
int R0H = L0H∗L0H´1;
for (Ry=0; Ry<=RMax; Ry++){

for (Rx=0; Rx<=Ry ; Rx++){
for (R2x=́ RMax; R2x<=RMax; R2x++){

for (R2y=́ RMax; R2y<=RMax; R2y++){
matrix M [ f (Rx ,Ry ) ] [ f (R2x , R2y ) ] ´=

vector P H [ ( Rx́ R2x)∗L0H+(Rý R2y)+R0H ] ;
}

}
}

}

The array ”vector P H[ ]” contains the sum of S with P 0.
int L0 = 2∗RMax+1;
int R0 = L0∗L0´1;
for (Rx=́ RMax; Rx<=RMax; Rx++){

for (Ry=́ RMax; Ry<=RMax; Ry++){
vector P H [Rx∗L0H+Ry+R0H] = 0 . ;
for (R2x=́ RMax; R2x<=RMax; R2x++){

for (R2y=́ RMax; R2y<=RMax; R2y++){
vector P H [Rx∗L0H+Ry+R0H] +=

X∗ v e c t o r S s t a r [ R2x∗L0+R2y+R0]∗P0(Rx́ R2x , Rý R2y ) ;
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3.6 Program for the square lattice

}
}

}
}

The array ”vector P H[ ]” is longer by 2Rmax then the array ”vector S star” in
order to avoid memory errors during the initialization of matrix M. All entries of
array ”vector P H[ ]”, which are not filled in this code block, are set to zero. The
multiplication by ’X’ is necessary, because ”vector S star” contains only S˚px, yq
divided by ’X’. The linear system of equations 3.110 is again solved in our code with
the LAPACK package.

Results

Finally we shall discuss the numerical results of the two dimensional case in Gebhard’s
formalism. The discussion for the program in one dimension showed that Gebhard’s
formalism is better suited for our numerical approach. In two dimensions it should
be even better, because Gebhard’s diagrammatic expansion starts from the exact
solution in infinite dimensions. The basic idea of any variational wave function is to
find an upper limit for the ground state energy and for our two dimensional Hubbard
model the energy expectation value is

xĤyg “ UxD̂yg ´ 4tP p1, 0q . (3.114)

Due to the fact that only xD̂yg and P p1, 0q contribute to the energy expectation
value, we are most interested in these two values. These two expectation values are
plotted as functions of g in figure 15. In both diagrams of figure 15 all lines have
qualitatively the same behavior. The results from order two and higher are on top of
each other and the values from the first order are slightly above of those. When we
compare the discrepancy between first order and the others, it is smaller then in one
dimension (figure 13). Because the first order calculations is the exact solution in
infinite dimensions, it converges to the exact solution by increasing the number of
spatial dimensions.

Next we examine the differences between our results for different orders and define
an error estimator to rate our approach. From one dimension we learned that our
approach increases in accuracy with increasing order. Thus we take the normed dif-
ference between one order and the next higher one as an estimation for the deviation
to the exact solution. For the double occupation the error estimator for order i is
defined as

errEstxD̂yg “

ˇ

ˇ

ˇ

ˇ

´

xD̂ynumeric
g

¯

mmax“i`1
´

´

xD̂ynumeric
g

¯

mmax“i

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

´

xD̂ynumeric
g

¯

mmax“i

ˇ

ˇ

ˇ

ˇ

(3.115)
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and for P p1, 0q we analogously define an error estimator

errEstP p1,0q “
ˇ

ˇpP p1, 0qnumericqmmax“i`1 ´ pP p1, 0qnumericqmmax“i

ˇ

ˇ

ˇ

ˇpP p1, 0qnumericqmmax“i

ˇ

ˇ

. (3.116)
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Figure 15: Gebhard’s formalism for variable g at fixed n “ 0.95, Rmax “ 15, rmax “ 5
and nmax “ 10

These two predictions for the error and errCheck are displayed in figure 16. As in one
dimension the values of errCheck are equally good for all different orders, also the
magnitude of the values is very similar as in one dimension. For g close to zero in
one dimension we observed a slight divergence of the lines (figure 14), which is not
the case for the square lattice. This fact could be an indication that our approach
works in two dimensions even better than in one for g close to zero.

We calculated values up to the fifth order, so we have the predicted errors up
to order four. Both errEstxD̂yg and errEstP p1,0q have the same trend for g as the
deviation from the analytic solution in one dimension (figure 14). They decrease
for several magnitudes of ten, when we alter g from zero to one. The estimated
errors for an even order are significantly smaller than the predicted errors for an
odd order. In one dimension we observed the phenomenon that the results from

70



3.6 Program for the square lattice

an even order and the results from the next higher odd order are nearly identical
(figure 14). If this phenomenon also exists in two dimensions, this would explain,
why the error estimator produce so different results for even and odd orders. When
we compare the shape and the values of the estimated errors and the exact errors in
one dimension, than we find that curves of odd order fit very well to the exact error
curves of one dimension. We conclude from this observation, that on the one hand
our error estimator for odd orders predicts the error very well. On the other hand
the predictions from the error estimator of even orders are not suitable.
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Figure 16: Gebhard’s formalism for variable g at fixed n “ 0.95, Rmax “ 15, rmax “ 5
and nmax “ 10
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Limit summation

In two dimensions the evaluation of the diagrams are much more computationally
time consuming than in one dimension. In order to get contributions from sixth and
seventh order diagrams, we have to restrict the summation for these diagrams even
more. For each order the summation limitation rmaxpmq is chosen small enough that
the number of summands does not exceed a number Nmax.

p2rmaxpmq ` 1q2pm´2q
ď Nmax (3.117)

The summation limit rmaxpmq for the order m is the minimum of the global summation
limit rmax and the inversion of inequality 3.117.

rmaxpmq “ min
ˆ

rmax, t
1
2

ˆ

N
1

2pm´2q
max ´ 1

˙

u

˙

(3.118)

The symbols t. . .u indicate rounding down to the next integer. In the example of
figure 17 we have the following values for Nmax “ 100000

rmaxp3q “ 10 ,
rmaxp4q “ 8 ,
rmaxp5q “ 2 ,
rmaxp6q “ 1 ,
rmaxp7q “ 1 .

(3.119)

The values of errCheck has the anticipated form in figure 17. Also the shape and the
magnitude of the graphs up to order four of the estimated errors is very similar to
the corresponding plots with only the simple rmax (see figure 16). For the fifth order
the estimated error behaves in the expected way, because its line runs parallel to
that of order one and three. Also its magnitude is around the right values. The
sixth order also continues the trend of order two and four. As we stated before, the
estimated errors for odd orders reproduce the exact errors of one dimension in an
adequate way, even the new order five.

On the one hand this order dependence of rmaxpmq allows us to evaluate higher
orders and gives proper results. But on the other hand the estimated errors become
artificially smaller, because for each higher order the summation cutoff rmaxpmq
becomes even smaller. From one dimension we learned that higher orders profit
more from increased rmax, therefore it is counterproductive to restrict rmax for higher
orders. Thus higher orders cannot contribute as much as they should, which in
return reduces the estimated errors artificially.

Despite this contradiction, we believe that the higher order diagrams contribute still
in a sufficient manner. Due to the fact that the self-consistency cycle is iterated
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3.6 Program for the square lattice

several times, the higher order diagrams do not contribute only in their summation,
but also in the lower order diagrams in the form of the lines P px, yq. The lines P px, yq
contain all diagrams from the previous iterations. Even if these results appear to be
proper, we still have to be careful with those of the error estimators.
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Figure 17: Gebhard’s formalism for variable g at fixed n “ 0.95, nmax “ 10, Rmax “

15, rmax “ 10 and Nmax “ 100000

Stochastical summation

We showed that choosing rmax depended of the different orders is a good and simple
way to enable contributions of greater rmax and higher order diagrams. But it still
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remains the fact from one dimension, that the higher order diagrams contribute even
more for sufficiently large rmax. We attempt to solve this shortcoming by doing a
stochastical summation for large rmax in high orders.

When we evaluate the diagrams, we now start in each order with a summation
up to cutoff rmaxpmq. Exactly the way we described in the previous part. If this
rmaxpmq is smaller then the global rmax, we do the summation for the remaining
region stochastically. In the stochastical summation we have to consider that the
contribution of the diagrams are dropping for large lattice vectors ri. We incorporate
this fact by doing the stochastical summation first for a small shell. This shell includes
for order m all sets of lattice vectors tr0, . . . , rm´3u outside of the original summation
area pri ď rmaxpmqq and inside a by ∆ increased summation area pri ď rmaxpmq`∆q.
A lattice vector ri is smaller than the integer rmaxpmq, if the absolute values of all
components of ri are smaller than rmaxpmq.

In this shell we evaluate the m-th order diagrams for Nmax random lattice vec-
tor sets and sum these values up. The final contribution of this shell to the self
energy is the value of the sum times the number of lattice vector sets inside the shell
divided by Nmax. Next we evaluate the next bigger shell with the same procedure,
for this we only have to replace the lower cutoff rmaxpmq with rmaxpmq `∆ and the
upper cutoff rmaxpmq `∆ with rmaxpmq ` 2∆. We repeat this iteration over shells
until the upper cutoff is larger than the global cutoff rmax.

The results of this stochastical summation for shells is shown in figure 18. The graphs
in these diagrams are very similar to those of figure 16 and so we conclude that the
larger rmax does not give much higher accuracy.

The advantage of this stochastical summation over shells is that we can include addi-
tional error estimators in the numerical process. If we do the stochastical summation
in a shell we can calculate the mean value of all Nmax contributions and the estimated
error is the deviation of the single points from the mean value. If the deviation is
too large, then we could increase the number Nmax and add more random points.
Secondly the contribution of additional shells to the proper self-energy S˚ can be
estimated by the quotient of the last calculated shell contribution divided by the
proper self-energy. The proper utilization of these two additional error estimators
is still in progress. These two predictions for errors can be used to determine the
quality of our results or to spare the evaluation of diagrams in regions, where they
contribute very little.

74



3.6 Program for the square lattice

10−5

10−4

10−3

10−2

10−1

er
r C

h
e
ck

0 0.2 0.4 0.6 0.8 1

g

mmax = 1

mmax = 2

mmax = 3

mmax = 4

mmax = 5

10−12

10−8

10−4

100

er
rE

st
P
(1

,0
)

10−9

10−6

10−3

100

er
rE

st
〈D̂

〉 g

mmax = 1

mmax = 2

mmax = 3

mmax = 4

Figure 18: Gebhard’s formalism for variable g at fixed n “ 0.95, nmax “ 10, Rmax “

15, rmax “ 10, Nmax “ 10000 and ∆ “ 1
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4 Summary

We started this thesis with the aim to evaluate numerically the Gutzwiller wave
function (GWF) for the equally spaced square lattice in one and two dimensions
in the Hubbard model. The method of our choice for calculating the expectation
values of double occupation and density matrix are two diagrammatic expansions.
Metzner and Vollhardt developed the first expansion and it is discussed in detail
in section 2.3. The second expansion is an optimized form of the first expansion
and was developed by Gebhard. Due to the similarity of the two expansions the
discussion of the second one is much shorter in section 2.4.

Before evaluating the diagrammatic expansions we need all the skeleton diagrams up
to our cutoff order. Therefore we used a Mathematica program that reads in the
diagrams from a ϕ4-theory, because the diagrams of the ϕ4-theory are topologically
equivalent to the diagrams we need. Then the program creates all skeleton diagrams
for the numerical evaluation and export those in a suitable way. Our program
exported the diagrams up to order seven for the numerical evaluation in one and
two dimensions.

First, we applied the two formalisms in one dimension and compared the results
with the available analytic solution. The main insight we gained was that Gebhard’s
formalism is suited much better for our numerical approach than the other formalism.
On the one side Metzner and Vollhardt’s formalism starts from the uncorrelated
state and on the other side Gebhard’s formalism is in zeroth order identical to the
Gutzwiller approximation, which is the exact solution for infinite spatial dimensions
and already a qualitatively description for one dimension. In the numerical investi-
gation we therefore concentrate on Gebhard’s formalism.

Next we investigated the dependency on the cutoff parameters in our numerical
approach. Self-consistency is reached fast a few iterations for various parameters for
the self-consistency cycle and we can stop to iterate further. The three major steps
in the self-consistency cycle are evaluation of skeleton diagrams with dressed lines for
the proper self-energy, calculating the self-energy by the Dyson equation and finally
calculating new dressed lines for the next iteration. All equations are intended for
real space and not momentum space and thus the diagrammatic evaluation happens
also in real space.

We have two cutoff parameters in the diagrammatic evaluation, first a limit in
the summation over lattice vectors and second a upper limit for the range of the
proper self-energy. Choosing the summation limit greater than six affected the
accuracy very little, but higher orders profit more from a larger summation limit
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than lower orders. Increasing the range limitation improves accuracy, especially
the error in a sum-rule, which is valid for the GWF in all dimensions, is strongly
affected by this parameter. Also this parameter dependence rises with the maxi-
mally used order of diagrams. We conclude from that that the cutoff parameter
in real space have to be enlarged, when we want to fully utilize higher order diagrams.

The physical parameters filling n and Gutzwiller parameter g strongly determine the
quality of our results. For nearly half filled band and g close to zero, the relative
accuracy of our approach decreases. For large g or less than half-filled band the
accuracy is very high. An interesting phenomenon showed up: The accuracy of a
result up to an even order is almost as good as the result of the next higher odd
order. So the accuracy improvement from one order to the next is alternately small
or large. In two dimensions this phenomenon was also observed. We defined an
error estimator by the relative difference of one order with the result of the next
higher order. The estimated error was in general greater for odd orders than for even
orders. The estimated errors for the odd orders is very similar in size and qualitative
behavior to the exact error in one dimension.

Due to the computationally more expensive summation over the lattice in two
dimensions than in one dimension, we are not able to evaluate the diagrams up
to order seven for a suitable set of cutoff parameters. Therefore we improved the
summation first by choosing the summation cutoff dynamically for each order. This
allowed us to utilize diagrams up to seventh order, but the summation cutoff for
high orders is very small. This circumstance we improve by first determining the
summation limit adaptively and replacing the exact summation by a stochastical
summation. The proper implementation of the adaptive scheme and the stochastical
summation is still in progress.
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Appendix

Program in dim 1
In section 3.5 the self-consistency cycle of the program is discussed. In the following
is the complete main file of the program printed including the self-consistency cycle:
#include <s t d i o . h>
#include <s t d l i b . h>
#include <math . h>
#include <l apacke . h> // package to s o l v e l i n e a r equat ion
#include <omp . h> // package to p a r a l l e l i z e
#include ”DiagramsForCinDim1Order7 . h” // orde r f unc t i on s
#include ” Diagrams funct ions . h” // d e f i n i t i o n s o f f u n c t i o n s

typedef double (∗ORDER FUNC) ( int R, int r [ ] , double G[ ] , int GMax) ;

int main ( int argc , char ∗argv [ ] )
{

double g = a t o f ( argv [ 1 ] ) ;
double n = a t o f ( argv [ 2 ] ) ;
int RMax = a t o i ( argv [ 3 ] ) ;
int rMax = a t o i ( argv [ 4 ] ) ;
int mMax = a t o i ( argv [ 5 ] ) ;
int nMax = a t o i ( argv [ 6 ] ) ;

p r i n t f ( ”g=%g\n” , g ) ;
p r i n t f ( ”n=%g\n” , n ) ;
p r i n t f ( ”RMax=%d\n” , RMax) ;
p r i n t f ( ”rMax=%d\n” , rMax ) ;
p r i n t f ( ”mMax=%d\n” , mMax) ;
p r i n t f ( ”nMax=%d\n” , nMax ) ;
p r i n t f ( ”\n” ) ;

ORDER FUNC ∗ order = (ORDER FUNC ∗) c a l l o c ( ( 8 ) , s izeof (ORDER FUNC ∗ ) ) ;
// order [ 0 ] i s empty to keep i t e a s i e r to read
order [ 1 ] = order1 ;
order [ 2 ] = order2 ;
order [ 3 ] = order3 ;
order [ 4 ] = order4 ;
order [ 5 ] = order5 ;
order [ 6 ] = order6 ;
order [ 7 ] = order7 ;

int R0long = RMax+mMax∗rMax ;
int R0 =(RLength ´1)/2;
double ∗ a r r a y o v e r l i n e P o l d = c a l l o c (2∗ (RMax+mMax∗rMax)+1 ,

s izeof ( double ) ) ;
double ∗ a r r a S s t a r = c a l l o c (2∗RMax+1, s izeof ( double ) ) ;
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double ∗ array S = c a l l o c (2∗RMax+1, s izeof ( double ) ) ;

int R;
for (R=́ RMax; R<=RMax; R++){

a r r a y o v e r l i n e P o l d [R+R0long ] = P0(R, n ) ;
} ;
double X = x (g , n ) ;

int i t e r ;
for ( i t e r =1; i t e r <=nMax ; i t e r ++){

// s e t t i n g a r r a y S s t a r back to zero
for (R=́ RMax; R<=RMax; R++){

a r r a y S s t a r [R+R0 ] = 0 . ;
ar ray S [R+R0 ] = 0 . ;
a r ray ove r l i n e P new [R+R0 ] = 0 . ;

}

// order mMax to 3
int m;
for (m=mMax; m>=3; ḿ ´){

double ∗sumHelp = c a l l o c (RMax+1, s izeof ( double ) ) ;
double multHelp = pow(X, ( ( double ) m) ´1 . ) ;
{
#pragma omp p a r a l l e l for
for (R=0; R<=RMax; R++){

int r [m´2] ;
r e c u r s i v e (&sumHelp [R] , R, m´3, r , rMax ,

a r r a y o v e r l i n e P o l d , 2∗R0long+1, order [m] ) ;
}
}
for (R=0; R<=RMax; R++){

a r r a y S s t a r [R+R0 ] +=multHelp∗sumHelp [R ] ;
}

}

// second order
int r [ 1 ] ;
i f (mMax>=2){

for (R=0; R<=RMax; R++){
a r r a y S s t a r [R+R0 ] += X∗ order [ 2 ] ( R, r , a r r a y o v e r l i n e P o l d ,

2∗R0long +1);
}

}

// f i r s t order
i f (mMax>=1){

a r r a y S s t a r [0+R0 ] += order [ 1 ] ( 0 , r , a r r a y o v e r l i n e P o l d ,
2∗R0long +1);

}
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//make a r r a y S s t a r symmetric
for (R=1; R<=RMax; R++){

a r r a y S s t a r [´R+R0 ] = a r r a y S s t a r [R+R0 ] ;
} ;

// c a l c array S from a r r a y S s t a r by Dyson equat ion
ca l cS f romSstar ( a r r ay S s t a r , RMax, g , n , array \ S ) ;

// c a l c ar ray over l ine P new from array S
calcOverlinePFromS ( array S , RMax, g , n , a r ray ove r l i n e P new ) ;

// f o r the next i t e r a t i o n s e t a r r a y o v e r l i n e P o l d
// equa l to ar ray over l ine P new
for (R=́ RMax; R<=RMax; R++){

a r r a y o v e r l i n e P o l d [R+R0long ] = ar ray ove r l i n e P new [R+R0 ] ;
}

}

// c a l c u l a t e doub le occupat ion
double D = calcDoubleOccupation ( array S , RMax, g , n ) ;
p r i n t f ( ”D = %6.6g\n” , D) ;
// c a l c u l a t e P
double ∗P = c a l l o c (2∗RMax+1, s izeof ( double ) ) ;
calcPfromS ( array S , RMax, g , n , P) ;
for (R=0; R<=RMax; R++){

p r i n t f ( ”P[%d]=%6.6g\n” , R, P[R+R0 ] ) ;
}
double check = sumRuleCheck (g , n ,RMax,P,D) ;
p r i n t f ( ”Summation Rule Check = %6.6g\n” , check ) ;

f r e e ( a r r a y S s t a r ) ;
f r e e ( array S ) ;
f r e e ( a r r a y o v e r l i n e P o l d ) ;
f r e e ( a r ray ove r l i n e P new ) ;
f r e e (P) ;

return 0 ;
}
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