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1 Introduction
Every physics student learned in the thermodynamics lecture, what an adiabatic
process in thermodynamics is. During an adiabatic process in thermodynamics
the system exchanges no heat Q with the environment.

δQ = 0 ⇒ δU = δW (1.1)

These adiabatic processes can be in experiments approximated by quick pro-
cesses, because then the process duration is so short, that only a small amount
of heat can be exchanged. In this bachelor thesis will only adiabatic processes
in Hamilton mechanics be examined. In Hamilton mechanics the heat concept
does not exist, so there the definition of an adiabatic process must be different.
The situation in Hamilton mechanics is, that one particle is caught in a

potential and this potential transform from its initial form to a different one.
The process is called adiabatic, if the change of the potential per period of the
particle is very small. Therefore every adiabatic process in Hamilton mechanics
is very slow.
Now arises the question, how these two different definitions of an adiabatic

process are connected with each other? In thermodynamics you work with the
assumption, that the system is always in its equilibrium state. That is only
possible, when the movements of the particles in the system are much faster
then the thermodynamic process. Or formulated in the other way around, that
in the time for a typical movement of a particle the change of the system caused
by the thermodynamic process is small. This sound very familiar with the
definition of an adiabatic process in Hamilton mechanics.

When in Hamilton mechanics the potential alters its form, then it performs
work on the particle. Because the single particle has no contact with other
particles, the performed work is equal to the energy gain of the particle like in
1.1. So the connection between energy and work is equal in both cases of an
adiabatic process. This short consideration should has shown the familiarity of
the two definitions for adiabatic processes.
In most cases of adiabatic processes in Hamilton mechanics the phasespace

is an invariant value. This effect is often used to calculated the energy of the
particle during and after the process without solving the Hamilton equations.
This is often taught in lectures, but also applied in current research like in
this papers [5]. In this paper a theoretical process is designed to cool one
particle in a potential. In this thesis the interest is not focused to use this
effect, but instead to create adiabatic processes, which change the phasespace
of the particle in the potential.
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2 Analytical part

2 Analytical part

2.1 Definition of an adiabatic invariant

We examine a one dimensional mechanical system with an Hamiltonian

H = H(q(t), p(t), λ(t)) (2.1)

during the time interval [0, tfinal]. In case the variable λ(t) is constant the
system performs a periodic motion with a constant energy E and cycle duration
T . In mechanics the adiabatic limes is the case, when the change of λ during
each period is small:

T

∣∣∣∣dλ(t)

dt

∣∣∣∣� |λ(t)| ∀t ∈ [0, tfinal] (2.2)

When λ(0) and λ(tfinal) are constant and not equal, the ending time tfinal is
much greater than one cycle duration T .

T � tfinal (2.3)

An adiabatic invariant I is a value of the system, which changes slowly enough
in the adiabatic limes.

dI

dt
= O(λ̇1+δ) δ > 0 (2.4)

If I changes with a higher order of λ̇ than 1, then the total change of I can be
estimated as zero in the adiabatic limes.

|I(tfinal)− I(0)| = |
tfinal∫
0

dI(t)
dt

dt| ≤
tfinal∫
0

|dI(t)
dt
|dt

≤
tfinal∫
0

max
t′∈[0,tfinal]

|dI(t
′)

dt′
|dt = max

t′∈[0,tfinal]
|dI(t

′)
dt′
|tfinal

2.4
= O(λ̇1+δ)tfinal

2.7
= O(λ̇δ)

λ̇→0−→ 0

(2.5)

In this calculation tfinal is replaced with the help of the average λ̇.

λ̇ =
1

tfinal

tfinal∫
0

λ̇(t)dt =
λ(tfinal)− λ(0)

tfinal

(2.6)

⇒ tfinal =
λ(tfinal)− λ(0)

λ̇
= O(λ̇−1) (2.7)

In case λ(tfinal) is equal to λ(0), then the adiabatic process must be split-up
into two processes to avoid a division by zero. The inner time border tmiddle

must be chosen with λ(tmiddle) not equal to λ(0) and this is choice is possible,
if λ(t) is not constant.
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2.2 Theorem: Phasespace is an adiabatic invariant

2.2 Theorem: Phasespace is an adiabatic invariant

In some textbooks you find the theorem, that phasespcae is an adiabatic
invariant. Examples for such textbooks are [4], [3] and [1]. The phasespace A
is the integration of the momentum p over the location q for one period of the
system.

A =

∮
pdq (2.8)

So it is necessary to have a periodic system, to calculate the phasespace. In this
section the Hamiltonian H = H(q, p, λ) from section 2.1 is used. This system
is periodic in case of a constant λ.
Now a typical way to proof the adiabatic invariance of the phasespcae is

shown. But first we need some equations to use during the proof. The functions
of locations q(t) and p(t), you normal only get by solving the Hamilton‘s
equations

q̇ =
∂H

∂p

∣∣∣∣
q,λ

ṗ = − ∂H

∂q

∣∣∣∣
p,λ

(2.9)

for explicit start conditions. When you split the cycle in suitable sections, then
in each section of the cycle the momentum p can explicit be calculated by the
variables q, E and λ.

p = p(q, E, λ) (2.10)

Next we need to derive E = H(q, p, λ) and E = H(q, p(q, E, λ), λ) with respect
to t, E and λ.

dE

dt
=

dH(q, p, λ)

dt
=
∂H

∂q

∣∣∣∣
p,λ

q̇ +
∂H

∂p

∣∣∣∣
q,λ

ṗ+
∂H

∂λ

∣∣∣∣
q,p

λ̇
2.9
=

∂H

∂λ

∣∣∣∣
q,p

λ̇ (2.11)

1 =
∂E

∂E

∣∣∣∣
q,λ

=
∂H(q, p(q, E, λ), λ)

∂E

∣∣∣∣
q,λ

=
∂H

∂p

∣∣∣∣
q,λ

∂p

∂E

∣∣∣∣
q,λ

(2.12)

⇒ ∂p

∂E

∣∣∣∣
q,λ

=

(
∂H

∂p

∣∣∣∣
q,λ

)−1

(2.13)

0 =
∂E

∂λ

∣∣∣∣
q,E

=
∂H(q, p(q, E, λ), λ)

∂E

∣∣∣∣
q,E

=
∂H

∂p

∣∣∣∣
q,λ

∂p

∂λ

∣∣∣∣
q,E

+
∂H

∂λ

∣∣∣∣
q,p

(2.14)

⇒ − ∂p

∂λ

∣∣∣∣
q,E

=
∂H

∂λ

∣∣∣∣
q,p

(
∂H

∂p

∣∣∣∣
q,λ

)−1

(2.15)
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2 Analytical part

Equipped with these equations the proof can be done:

d

dt

∮
p(q, E, λ)dq =

(
dE

dt

∂

∂E

∣∣∣∣
q,λ

+
dλ

dt

∂

∂λ

∣∣∣∣
q,E

)∮
p(q, E, λ)dq (2.16)

=

∮ (
∂p

∂E

∣∣∣∣
q,λ

dE

dt
+
∂p

∂λ

∣∣∣∣
q,E

λ̇

)
dq (2.17)

2.11
=

∮ (
∂p

∂E

∣∣∣∣
q,λ

∂H

∂λ

∣∣∣∣
q,p

λ̇+
∂p

∂λ

∣∣∣∣
q,E

λ̇

)
dq (2.18)

2.13
=

∮ ( ∂H
∂p

∣∣∣∣
q,λ

)−1
∂H

∂λ

∣∣∣∣
q,p

λ̇+
∂p

∂λ

∣∣∣∣
q,E

λ̇

 dq (2.19)

2.15
=

∮ (
− ∂p

∂λ

∣∣∣∣
q,E

λ̇+
∂p

∂λ

∣∣∣∣
q,E

λ̇

)
dq = 0 (2.20)

This looks like an elegant way to proof the adiabatic invariance of the phasespace,
but in this way it is wrong.

First of all it surprises, that Ȧ is 0 and not O(λ̇1+δ). So the phasespace would
not only be an adiabatic invariant, it also would be an overall constant no
matter how fast the change of λ would be. There exist simple counterexamples,
which proof that the phasespace is not an overall constant.

Now it is time to find the root of the problem. While λ is constant the system
performs a periodic movement, but in the adiabatic limes λ is not constant,
so the system does not perform a periodic process. There are two ways to
interpret the closed integral during an adiabatic process.

The first way is to take the integral with a fixed λ. In this case the energy E
of the system would remain constant during the integral. So the equation 2.18
is wrong, because dE

dt
is 0 and equation 2.11 does only apply for the correct

solution of the Hamiltonian not on an altered one. During the rest of this
bachelor thesis the integral will be interpreted in this way.

The other way is to integrate from the start point to an end point, which is
similar to the start point. For example the start point is q = 0 and p = p0, so
the end point could be q = 0 and p = p0 + ∆p. In this case it is allowed to use
equation 2.11, but the integral would not be closed and so you must take the
start and end point into consideration. So in equation 2.16 an extra term of
dq
dt

∂
∂q

∣∣∣
E,λ

is needed on the right side and in equation 2.17 extra terms of the

start and end points appear.
A few years ago C.G. Wells and S.T.C. Siklos presented in their scientific

paper [6]. They also come up with an own way to proof the adiabatic invariance
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2.3 Used Hamiltonians

of the phasespace, which lead to two interesting results. They defined an average
phasespace J of all starting points with the same initial energy. The first result
is, that the difference between the average and an arbitrary phasespace converse
to zero in the adiabatic limes.

|J(t)− A(t)| = O(λ̇) t ∈ [0, tfinal] (2.21)

The next result is, that J changes with order in λ̇ and λ̈.
dJ

dt
= O(λ̈, λ̇2) (2.22)

So the phasespace is an adiabatic invariant, if λ̈ gets with a higher order of λ̇
then 1 in the adiabatic limes smaller.

λ̈ = O(λ̇1+δ) ⇒ |A(tfinal)− A(0)| ≤
{

O(λ̇) if δ > 1

O(λ̇δ) if δ ≤ 1
(2.23)

That the adiabatic invariance of the phasespace depends on λ̈ is the big
difference between this proof and any other you find in textbooks.

In the following chapters their will be examples of different adiabatic Hamil-
tonians. The intention behind these examples is to find one, which changes
his phasespace in the adiabatic limes. One tool to use in this task, is a not
vanishing λ̈. That would point out, that the different proofs of the adiabatic
invariance of the phasespace, which can be found in textbooks, are wrong.

2.3 Used Hamiltonians

The Hamiltonians in the rest of this bachelor thesis describe one classic me-
chanical and punctual particle, which is caught in a convex potential. The
potential depends only on the location q and a two dimensional time depending
parameter λ(t) = (λ1(t), λ2(t))

T. When λ is constant the particle performs
periodic motion and phasespace can be calculated. So the Hamiltonian has all
traits like the one in chapter 2.1 and in case of a very small λ̇ it is an adiabatic
process. For simplicity the mass of the particle is set to 1.

H(q, p, λ) =
p2

2
+ V (q, λ) (2.24)

As a potential only two different forms are later used. First V1, which is
quadratic in the location q, and second V2, which is biquadratic in q, are used
and both have a one dimensional parameter ω(q, λ).

V1(q, t) =
1

2
ω2(q, λ)q2 (2.25)

V2(q, t) =
1

4
ω4(q, λ)q4 (2.26)
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2 Analytical part

ω(q, λ) is a very simple function. It returns λ1(t), if q is positive, and λ2(t) else.
Later λ1 and λ2 will be just referred to as ωr and ωl, because these names are
very intuitive as they describe the left and the right branch of the potentials.

ω(q, t) =

{
ωr(t) = λ1(t) if x > 0
ωl(t) = λ2(t) if x ≤ 0

(2.27)

For the change of momentum in the numerical calculation the force F (q, t) is
needed.

F1(q, t) = −∂V1(q, t)

∂q
= −ω2(q, t)q − q2ω(q, t)

∂ω(q, t)

∂q
(2.28)

In the cases (q < 0) and (q > 0) ∂ω(q,t)
∂q

is zero, because ω is in each case
constant. For the last case q → 0 it can be shown with help of the difference
quotient, that −∂V1(q,t)

∂q
is there converging to zero, besides ∂ω(q,t)

∂q
is diverging.

For the mathematical proof you have to differ in six cases and it can be found
in the attachment (5.1). For the biquadratic potential it is the same and the
forces simplifies to:

F1(q, t) = −ω2(q, t)q (2.29)
F2(q, t) = −ω4(q, t)q3 (2.30)

To be able to compare the different potentials better, ω(q, t = 0) is a fixed
constant called ω0.

ω(q, t = 0) = ωl(t = 0) = ωr(t = 0) = ω0 (2.31)

During a time τ ωr and ωl evolve to a constant value called ωτ and after that
they remain constant.

ω(q, t ≥ τ) = ωl(t ≥ τ) = ωr(t ≥ τ) = ωτ (2.32)

To simplify it more ωτ is one of two different values. The first value is 2ω0 and
the second is 1

2
ω0. In case ωτ is 2ω0, then ωl(t) and ωr(t) are monotonously

increasing functions. In the other case they are monotonously decreasing
functions. An example for the first case would be:

ω(q, t) =


ω0 if t = 0

ω0(1 + t
τ
) if 0 < t < τ and x > 0

ω0(1 + ( t
τ
)2) if 0 < t < τ and x ≤ 0

2ω0 if t ≥ τ

(2.33)

In the adiabatic limes τ will steadily be increased, so
∣∣∣∂ω(q,t)

∂t

∣∣∣ converge steadily
to zero.

T � τ ⇒ T

∣∣∣∣∂ω(q, t)

∂t

∣∣∣∣� ω(q, t) (2.34)
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2.4 Conservation of energy through special ω(q, t)

2.4 Conservation of energy through special ω(q, t)

The intention behind creating a ω(q, t) is to change the phasespace in the
adiabatic limes. The approach in this thesis is to form ω(q, t) that way, that
for a particle with special starting conditions its energy keeps constant, besides
ωl(t) and ωr(t) change during the process. In that case the phasespace of this
special particle would change even in the adiabatic limes. The way to do this, is
that, when the particle is on the right side (q > 0), ωr(t) must remain constant
and ωl(t) can alternate. Is the particle on the left side the roles of ωr(t) and
ωl(t) are switched.

if q ≤ 0 ∂ωr(q,t)
∂t
6= 0 and ∂ωl(q,t)

∂t
= 0

if q > 0 ∂ωl(q,t)
∂t
6= 0 and ∂ωr(q,t)

∂t
= 0

(2.35)

In order to get a simple ω(q, t), the starting conditions of the special particle
are q(t = 0) = 0 and p(t = 0) = p0 > 0. For these starting conditions the
particle spends exactly one half period one the right side and after that one
half period on the left side and so on.

2.4.1 linear increase of ωl(q, t) and ωr(q, t) in their non-constant
times

Now a ω(q, t) will be constructed, in which ωl(t) and ωr(t) have the constant
derivation 2

τ
in their non-constant times. For this the interval [0, τ ] is split into

smaller intervals. These smaller intervals are the time in which the particle is
either on the right or the left side of the potential. So this smaller intervals are
exact one half period long. The tricky part is, that because of the increasing
ω(q, t) the following interval is shorter then the prior one. The period duration
T (E,ω) can be calculated by the formula

T (E,ω) =
∂A

∂E

∣∣∣∣
ω

. (2.36)

The derivation of this formula can be found in the attachment(5.2). For the
quadratic and the biquadratic potential you get:

quadratic potential : T (ω) =
2π

ω
(2.37)

quadratic potential : T (E,ω) =
3

ωE
1
4

1∫
−1

√
1− y4dy (2.38)
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2 Analytical part

With the formula for the period and the initial energy E0 of the particle, which
remain constant for the whole process, the first interval can be calculated and
the results for ωl(t) and ωr(t) are:

t ∈ (0, t0] t0 =
1

2
T (E0, ω0) ωl(t) = ω0(1 +

2

τ
t) ωr(t) = ω0 (2.39)

In the second interval ωl(t) and ωr(t) are steadily continued, but now ωl(t) is
constant and ωr(t) is increasing. Because the particle is now on the left side,
the interval length will be calculated with ωl(t0).

t ∈ (t0, t1] ωl(t) = ω0(1 + 2
τ
t0)

t1 = t0 + 1
2
T (E0, ωl(t0)) ωr(t) = ω0(1 + 2

τ
(t− t0))

(2.40)

In the same way the ωl(t) and ωr(t) in the next two intervals can be found:

t ∈ (t1, t2] ωl(t) = ω0(1 + 2
τ
(t− t1 + t0))

t2 = t1 + 1
2
T (E0, ωr(t1)) ωr(t) = ω0(1 + 2

τ
(t1 − t0))

(2.41)

t ∈ (t2, t3] ωl(t) = ω0(1 + 2
τ
(t2 − t1 + t0))

t3 = t2 + 1
2
T (E0, ωl(t2)) ωr(t) = ω0(1 + 2

τ
(t− t2 + t1 − t0))

(2.42)

Now you should see the system, how to create the following intervals and the
functions for ωl(t) and ωr(t). Important to consider is whether n is even oder
odd.

n even t ∈ (tn, tn+1] ωl(t) = ω0(1 + 2
τ

n∑
i=0

(−1)iti)

tn+1 = tn + 1
2
T (E,ωl(tn)) ωr(t) = ω0(1 + 2

τ
(t−

n∑
i=0

(−1)iti))

(2.43)

n odd t ∈ (tn, tn+1] ωl(t) = ω0(1 + 2
τ
(t+

n∑
i=0

(−1)iti))

tn+1 = tn + 1
2
T (E,ωr(tn)) ωr(t) = ω0(1− 2

τ

n∑
i=0

(−1)iti)

(2.44)

This definition is not exactly compatible with the requirements. The problem
is, that ωl(τ) is slightly higher then 2ω0 and ωr(τ) lower then 2ω0. To solve
this problem two corrections are needed. The first one is to stop ωl(t) from
increasing, when it reached the 2ω0 mark and the second one is to extend the
time until ωr(t) also reached 2ω0. An example with τ = T of the corrected
ω(q, t) can be seen in figure 1.
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2.4 Conservation of energy through special ω(q, t)
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Figure 1: ωl(t) and ωr(t) (left) and their derivations with respect to t (right)
for τ = 2T

2.4.2 Construction of more ω(q, t)

With the help of the new found ω(q, t) more ω(q, t) are constructed in this
section. To the ω(q, t) from the chapter 2.4.1 will be referred as ω(lin)

(pos)(q, t) and
the new will still be named ω(q, t). For the construction also a function f(x),
which is defined on the interval [0, 1], is required. In chapter 2.3 is a distinction
of two cases for ω(q, t). In the first case the end value of ω(q, t) is 2ω0 and ωl(t)
and ωr(t) are monotonous increasing. To create this first case the function
f(x) must also be monotonous increasing and also it must have these boundary
values:

f(0) = 1 f(1) = 2 (2.45)

In the second case ωl(t) and ωr(t) are monotonous decreasing and the end value
of both is 1

2
ω0. Analogical he function f(x) is monotonous decreasing and its

boundary values are:

f(0) = 1 f(1) =
1

2
(2.46)

The new ω(q, t) is simply:

ω(q, t) = ω0f(
ω

(lin)
(pos)(q, t)

ω0

− 1) (2.47)

In order to keep the correct side constant ti of ω
(lin)
(pos)(q, t) have to be adjusted.

t0 =
1

2
T (E0, ω0) ti+1 = ti +

1

2
T (E0, ω0f(

ω
(lin)
(pos) r,l(ti)

ω0

− 1)) (2.48)

Whether ωl(ti) or ωr(ti) is taken, is done analogical to the normal ω(lin)
(pos)(q, t).

During this thesis used examples for f(x) are:

9



2 Analytical part

ωτ = 2ω0 ωτ = 1
2
ω0

ω
(lin)
(pos)(q, t): f(x) = 1 + x ω

(lin)
(neg)(q, t): f(x) = 1− 1

2
x

ω
(quad)
(pos) (q, t): f(x) = 1 + x2 ω

(quad)
(neg) (q, t): f(x) = 1− 1

2
x2

The resulting ω(q, t) can be seen in the figures 2, 3 and 4.
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Figure 2: ωl(t) and ωr(t) of ω(quad)
(pos) (q, t)(left) and their derivations with respect

to t (right) for τ = 2T
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Figure 3: ωl(t) and ωr(t) of ω(lin)
(neg)(q, t) (left) and their derivations with respect

to t (right) for τ = 2T
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3 Numerical part

3.1 Simulation

In the prior sections the Hamiltonians H(q, p, λ) are constructed, now it is
time to solve them. For the particle with the start conditions q(t = 0) = 0
and p(t = 0) = p0 > 0 the solution is simple, because its energy E remains for
the whole process constant. For particles with different start conditions the
problems can not be solved analytical, so a numerical approach must be done.
As a computer language C/C++ is used and every value is calculated with

a double accuracy, except for the integer values. The differential equations
are solved by the Leapfrog method and Neri 4th order method. These are
two explicit symplectic integrators. Symplectic integrators solve a slightly
perturbed Hamiltonian and their formulas are taken from [2]. The great
advantage of symplectic integrates compared to non-symplectic integrates
is, that the energy for a non time depending Hamiltonian remains constant.
Because the phasespace is the wanted value, the accuracy of the energy is
crucial, hence these two values are directly connected with each other.

quadratic potential : A = πqmaxpmax = 2π
E

ω
(3.1)

biquadratic potential : A =
E

3
4

ω
4

1∫
−1

√
1− y4dy (3.2)

If you use a non-symplectic integrator, then the error of the total energy grows
secularly. E.g. solving the normal harmonic oscillator with the classical Runge
Kutta method, then the total Energy increases steadily over time and does not
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3 Numerical part

remain constant and if you use implicit Euler method, then the total energy
decreases over time. Higher order symplectic integrators could be used to
improve the accuracy of the numerical integration, how you could construct
them is described here [7]. The increment for the numerical integration dt is
chosen as T

1000
, because then the solutions of the leapfrog method and the Neri

4th order method differ at most in the fourth digit after the dot.
In the following sections the numerical results are shown for the four particles

with the start conditions

q1 = 0 p1 = p0 (3.3)
q2 = 0 p2 = −p0 (3.4)
q3 = q0 p3 = 0 (3.5)
q4 = −q0 p4 = 0 , (3.6)

whereat q0 and p0 are chosen, that the particles have the same initial energy
E0. Besides the phasespace of these four particles an average phasespace A
of 1000 different particles is also calculated. These 1000 particles have all the
initial energy E0, but each got a different start condition. When you keep ω
equal to ω0, then the system is periodic with a period duration T0. The initial
conditions qi and pi are calculated with Hamiltonian H(q(t), p(t), ω0) of the
periodic system:

H(q(t), p(t), ω0) : qi = q(t =
i

1000
T0) pi = p(t =

i

1000
T0) 1 ≤ i ≤ 1000

(3.7)
To avoid systematic errors, because of this uniform splitting of the interval
(0, T0]. The results of some samples are compared to an average phasespace of
1000 random particles:

H(q(t), p(t), ω0) : qi = q(t = niT0) pi = p(t = niT0) 1 ≤ i ≤ 1000 (3.8)

ni is a random number out of the interval (0, 1]. With the use of 1000 particles
the results of the uniform and the random splitting is within a good accuracy
equal. E.g. when you use only 100 particles, then there is some perturbation
between the two results.

3.2 Numerical results for the quadratic potential

First arises the question, how to describe the adiabatic limes? The adiabatic
limes is defined as |λ̇| −→ 0. Our λ is connected to the time τ :

max
t∈[0,tfinal]

(|λ̇(t)|) ∝ 1

τ
(3.9)
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3.2 Numerical results for the quadratic potential

To find the adiabatic limes the final phasespace Aτ is calculated as a function
of τ . The adiabatic limes is reached, if Aτ practical does not change over some
powers of ten. This is not a mathematical rule, but it is very reasonable. In
case of increasing ω(q, t) the diagrams in figure 5 show the results in which the
τ -scale is logarithmic. The different phasespaces come from the different initial
conditions of the particles:

A1 : qstart = 0 pstart = p0 (3.10)
A2 : qstart = 0 pstart = −p0 (3.11)
A3 : qstart = q0 pstart = 0 (3.12)
A4 : qstart = −q0 pstart = 0 (3.13)

A : average of 1000 different particles (3.14)

In figure 5 you see, that A1 is constant 1
2
A0, because the potential was
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Figure 5: Adiabatic limes of ω(lin)
(plus)(q, t)(left) and ω

(quad)
(plus) (q, t)(right)

constructed to remain the energy of particle 1 constant. So pmax of particle 1 is
in the end of the process identical to the start, but qmax is reduced to its half,
because ω doubled its value over the process. This leads with A = πqmaxpmax

to an halved phasespace. The other four phasespace remain also quiet constant
apart from slight perturbations at small τ . Over the last 10 of 14 points every
phasespace practical does not change, so every phasespace should have reached
its value in the adiabatic limes within a very good accuracy. That A2 has
doubled its phasespace, can also easily be explained. Because for big τ particle
2 is always on the upcoming branch of ω(q, t) and so its energy gets doubled by
ωr(t) and also gets doubled by ωl(t). With the formula A = 2πE

ω
the phasespace

gets doubled in sum. The other three phasespaces A3, A4 and A can not be
explained that simple. Because A1 and A2 are the most extreme values, so the
three other values must lay between A1 and A2.
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3 Numerical part

The main intention of this thesis is to show, that the adiabatic limes is
no sufficient reason for the adiabatic invariance of the phasespace. In the
assumption, that here the adiabatic limes is reached, these examples show,
that the phasespace of the single particles A1, A2, A3 and A4 and an average
phasespace A does change over an adiabatic process.

Now it is time to check, whether this example is congruent with the formulas
2.21 and 2.22 found by Wells and Siklos. The first formula 2.21 implies, that
the phasespace of two particles with the same initial phasespace differ just
in order of λ̇ for all times, that includes the ending time tfinal at which the
phasespace reaches its value Aτ :

|A1(t)− A2(t)| = |A1(t)− J(t) + J(t)− A2(t)| ≤ (3.15)

≤ |J(t)− A1(t)|+ |J(t)− A2(t)| 2.21
= O(λ̇) = O(

1

τ
) (3.16)

In this example the difference of the end phasespace of A1 and A2 is in ap-
proximation constant 3

2
A0 and does not changes in order of 1

τ
. So this formula

|J(t)− A(t)| = O(λ̇) is here wrong and so forth it is not valid in general.
For the second equation 2.22 the second derivation of λ with respect to t is

needed. To visualise the first and the second derivation every 10th numerical
step the values of ωl(t) and ωr(t) got saved and by the difference quotients

ω̇(t) ≈ ω(t+ dt)− ω(t− dt)

2dt
, (3.17)

ω̈(t) ≈ ω(t+ dt)− 2ω(t) + ω(t− dt)

dt2
(3.18)

the derivations are approximated. As an example ωl(t) and ωr(t) for τ = 10T
can be seen in figure 6, the associated first derivation in figure 7 and the second
derivation is in figure 8. When you look at the ω̈l(t) and ω̈r(t) in in figure
8, then you see, that they run vertical up and down at some points. These
are Dirac delta functions and the finite width is just an result of the difference
quotient approximation. So max (|λ̈|) is an infinite number, in which case the
formula dJ

dt
= O(λ̇2, λ̈)(2.22) makes no restriction for the growth of J(t), which

is approximated by A. Thus this example does not interfere with the second
formula 2.22 found by Wells and Siklos. The next step is to create an smoothed
ω(q, t), so its ω̈l(t) and ω̈r(t) get smaller by 1

τ
.
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3.2 Numerical results for the quadratic potential
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Figure 6: ωl(t) and ωr(t) of ω(lin)
(pos)(q, t)(left) and ω

(quad)
(pos) (q, t)(right) for τ = 10T
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Figure 7: ω̇l(t) and ω̇r(t) of ω(lin)
(pos)(q, t)(left) and ω

(quad)
(pos) (q, t)(right) for τ = 10T
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(quad)
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3 Numerical part

3.3 Smoothed ω(q, t) for the quadratic potential

The basic idea again is, that the Energy of the particle with initial conditions
q1(t = 0) = 0 and p1(t = 0) = p0 > 0 remains constant, while ωl(t) and ωr(t)
increase from ω0 to 2ω0. In order to avoid Dirac delta functions in ω̈l(t) and
ω̈r(t) ω̇l(t) and ω̇r(t) have to be continuous functions. When the examined
particle is at q1(t) = 0, then both ω̇l(t) and ω̇r(t) have to be zero.
An easy way to implement such a ω(smooth)

(pos) (q, t), is to take this:

ω̇l(t) =

{
0 if q1(t) ≤ 0
p0−|p1(t)|

p0τ
if q1(t) > 0

ω̇r(t) =

{ p0−|p1(t)|
p0τ

if q1(t) ≤ 0

0 if q1(t) > 0
(3.19)

|p1(t)| =
√

2E0 − ω(q1(t), t)2q1(t)2 (3.20)

q1(t) and p1(t) are the location and the momentum of the particle with the
initial conditions q1(t = 0) = 0 ,p1(t = 0) = p0 and E0 =

p2
0

2
. It is import that

the resulting ω(q, t) is constructed by the motion of this special particle and
does not depend on the actual particle in the potential. For the special particle
the motion q1(t) is quite simple and does only depend on the time t. Thence
the resulting ωl(t) and ωr(t) do only depend on the time t. Now ωl(t) and ωr(t)
and their first and second derivations with respect to the time can be seen here:
figure 9 and 10
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Figure 9: ωl(t) and ωr(t) of ω
(smooth)
(pos) (q, t) (left) and their derivations with respect

to t (right) for tfinal ≈ 11T

For the other ω(q, t) like ω(lin)
(pos)(q, t) the scaling time τ and ending time tfinal

are approximatively the same. But for ω(smooth)
(pos) (q, t) these two times are just
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Figure 10: ω̈l(t) and ω̈r(t) of ω(smooth)
(pos) (q, t) for tfinal ≈ 11T

approximatively directly proportional to each other. For the adiabatic limes
examination it is no difference, but should be mentioned to prevent confusion.

ω
(lin)
(pos)(q, t) : tfinal ≈ 1τ (3.21)

ω
(smooth)
(pos) (q, t) : tfinal ≈ 10.8τ (3.22)

Now it is time to check the effect of the smooth ω
(smooth)
(pos) (q, t) on the final

phasespaces Aτ as a function of the process duration tfinal. The diagram in
figure 11 shows the five different phasespaces. As before A1 is constant A0

2
and
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Figure 11: Adiabatic limes of ω(smooth)
(pos) (q, t)

the other four increased to values greater then A0. Interestingly A2 and A
reached even higher values for Aτ with ω(smooth)

(pos) (q, t) then with ω(lin)
(pos)(q, t) or

ω
(quad)
(pos) (q, t). An explanation for the great increase of A2 is, that ωl(t) and ωr(t)

increases faster, when |q2(t)| is at its peak, and increases slow, when |q2(t)| is
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3 Numerical part

small. In this way the energy increase of particle 2 is optimised. Within an
accuracy of 0.01A0 A3 and A4 converge with ω(smooth)

(pos) (q, t) at the same value
as with ω(lin)

(pos)(q, t) or ω(quad)
(pos) (q, t), but this should just be coincidence caused

by potentials’ similarity.
The intention of this smooth potential is to undermine the equation 2.22.

This equation is not full filled, if ω̈l(t) and ω̈r(t) get faster smaller then ω̇l(t)
and ω̇r(t) in the adiabatic limes, like it is requested in 2.23. In figure 12 you
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Figure 12: Comparison of max |ω̇(smooth)
(pos) r (t)| and max |ω̈(smooth)

(pos) r (t)|

can see max |ω̇(smooth)
(pos) r (t)| and max |ω̈(smooth)

(pos) r (t)| as functions of τ in a double
logarithmic scale. The two functions in figure 12 are parallel, that means, that
they have the same order of τ . But this does not comply equation 2.23 and
the equation 2.22 found by Wells and Siklos could not be disproved.
This example shows also, that it is impossible to create an ωl(t) and ωr(t),

which keeps the energy of one special particle constant, but increases from ω0

to 2ω0 and ¨ωl,r(t) is small enough to full fill equation 2.23. For such a ωl,r(t) it
is necessary to increase its derivative from zero to a value proportional to 1

τ

in less then an half period, but this requires a second derivative, which is also
proportional to 1

τ
.

3.4 Case of decreasing ω(q, t)

In the last chapters just the case of a from ω0 to 2ω0 increasing ω(q, t) is
described. Now the complementary case of a from ω0 to 1

2
ω0 decreasing ω(q, t)

is shown. The procedure is the same as in chapter 3.2, so it is not necessary to
explain it again. The results for the adiabatic limes are very similar to them
from chapter 3.2. The different Aτ converge each to different values and for
the last 10 of 14 values, they practically remain constant, so the adiabatic
limes should be reached. The big difference is, that A1 and A2 switched places.
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3.4 Case of decreasing ω(q, t)
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Figure 13: Adiabatic limes of ω(lin)
(neg)(q, t)(left) and ω

(quad)
(neg) (q, t)(right)

On the one hand, ω(lin)
(neg)(q, t) and ω(quad)

(neg) (q, t) remain the energy of particle 1

constant. But now ω(q, t) decreases and that results with A = 2πE
ω

in a doubled
phasespace. On the other hand, particle 2 loses 3

4
of its energy during the whole

process, because it is always on the decreasing branch of the potential. The
adiabatic limes of A3 and A4 switched also compared to the increasing case.
This is not too obvious, because the two values are very similar with 1.338A0

and 1.348A0. An interesting coincidence is, that in case of increasing and in
case of decreasing ω(q, t) the adiabatic limes of A is both times 1.292A0.
This coincidence should be a bit more analysed. At the beginning of the

process, the thousand particles of A have the same initial energy, so forth they
all move on the same trajectories in the q-p-plane. These are the red lines in
form of an ellipse in figure 14. After the process the particles got different
energies and so they move on different trajectories and these trajectories build
a region in the q-p-plane. That region are the blue ellipses with holes in the
middle in figure 14. This two blue ellipses have the same form, but are rotated
with 90◦ to each other. The trajectories are not homogeneously spread over the
blue region, otherwise A would be 1.250A0 and not 1.292A0. Its distributions as
a function of the maximal momentum can be seen in figure 15. The height of the
distribution diagrams is chosen to keep the shown square footage constant. The
distributions ρ are normed, that the integration over the positive momentum
space would have the result 1. The comparison of the distribution of A in
ω

(lin)
(neg)(q, t) and ω

(lin)
(pos)(q, t) solves the mystery, because the distributions are

identical apart from the scaling factor 2.
That the same A is just a coincidence, shows the example of the ω(smooth)

(neg) (q, t)

seen in figure 16. The Aτ values of ω(smooth)
(neg) (q, t) have no accord with them of

ω
(smooth)
(pos) (q, t), though these two potentials are so similar to each other. A quick
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Figure 14: phasespace change of ω(lin)
(neg)(q, t)(left) and ω

(lin)
(pos)(q, t)(right)
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Figure 16: Adiabatic limes of ω(smooth)
(neg) (q, t)

view at the evolution from A0 to Aτ in figure 17 reveals, that for ω(smooth)
(neg) (q, t)

and ω(smooth)
(pos) (q, t) the trajectories fill different formed spaces in the q-p-plane.
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3.5 Results of the biquadratic potential

Not only the trajectories fill different spaces, also the distribution differs as
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Figure 17: phasespace change of ω(smooth)
(neg) (q, t)(left) and ω(smooth)

(pos) (q, t)(right)

seen in figure 18. On the one hand the distribution for ω(smooth)
(pos) (q, t) is very

symmetric, on the other hand for ω(smooth)
(neg) (q, t) the distribution is significantly

higher on the right side, which increases A from ω
(smooth)
(neg) (q, t), but not to the

level of A from ω
(smooth)
(pos) (q, t).
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Figure 18: distribution of A in ω(smooth)
(neg) (q, t)(left) and ω(smooth)
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3.5 Results of the biquadratic potential

This section is dedicated to the biquadratic potential. One main feature of the
biquadratic potential is its energy depending period duration T (E,ω). On the
contrary the period duration of the quadratic potential is only a function of ω.
This feature has a great impact to the adiabatic invariance of the phasespace.
The evolution to the adiabatic limes for four different ω(q, t) can be seen in
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3 Numerical part

figure 19 and 20. Like in the quadratic potential, the ω(q, t) keep the energy
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Figure 19: Adiabatic limes of ω(lin)
(pos)(q, t)(left) and ω

(quad)
(pos) (q, t)(right) at the

biquadratic potential
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Figure 20: Adiabatic limes of ω(lin)
(neg)(q, t)(left) and ω

(quad)
(neg) (q, t)(right) at the

biquadratic potential

of particle 1 constant, so that its Aτ is 2A0 in case of ω(pos)(q, t) or 1
2
A0 in

case of ω(neg)(q, t). But in the biquadratic potential Aτ of the other particles
converges to A0 for big τ . The reason for this is, that the energy of the other
particles changes during the process and so their period duration changes. This
is not the case for the quadratic potential. Now the period duration of the
particles does not accord to the periodic behaviour of the ω(q, t), which allows
the effect of adiabatic invariance of the phasespace. Interestingly the different
Aτ converge for the biquadratic potential much slower than for the quadratic
potential. Aτ reaches the value of its adiabatic limes with a τ = 10000T in
the biquadratic potential nearly as good as with a τ = 10T in the quadratic
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3.5 Results of the biquadratic potential

potential. So it needs 3 powers of ten more for the biquadratic potential than
for the quadratic potential to reach its adiabatic limes.

When you examine the situation accurate, then the phasespace of particle 1
changes in the adiabatic limes and so the phasespace is no adiabatic invariant
for the biquadratic potential. Also the difference in the phasespace of particle
1 and e.g. particle 2 disprove the first formula from Wells and Siklos 2.21. On
the contrary, the second formula from Wells and Siklos 2.22 works perfectly.
The average phasespace is here really an adiabatic invariant.

From a strict mathematical point of view the validation of the formulas is the
same for the quadratic and the biquadratic potential. From a more practical
point of view the situation is for the quadratic potential different than for the
biquadratic potential. On the one hand every calculated phasespace changes in
the adiabatic limes in the quadratic potential, in the biquadratic potential on
the other hand just the phasespace of particle 1 changes. If there is an error of
measurement in the start condition of particle 1, than its phasespace would
also converge to A0 and would be an adiabatic invariant. So practically the
phasespace is for the biquadratic potential an adiabatic invariant.
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4 Conclusion and outlook

4 Conclusion and outlook
In this bachelor thesis is proven by example, that an arbitrary slowly change in
the potential does not result in a constant phasespace.

|A(tfinal)− A(0)| 6= O(λ̇) (4.1)

Also, that the phasespace differnce of two particles with the same initial energy
is in the adiabatic limes constant, is proven to be wrong. That is equivalent to
the first formula from Wells and Siklos 2.21.

|A1(t)− A2(t)| 6= O(λ̇) ∀t ∈ [0, tfinal] (4.2)

When you take λ̈ with in account, like it is done in the second equation from
Wells and Siklos 2.22, then all presented examples does not contradict with the
adiabatic invariance of the phasespace.

|A(tfinal)− A(0)| = O(λ̇) +

tfinal∫
0

O(λ̈)dt (4.3)

Whether this equation applies on the phasespace of every particle, only on
an averaged phasespace or not in general, is not answered. But in this thesis
is the attempt, to achieve a change in the phasespace besides the adiabatic
limes and a small enough λ̈, missing. As in chapter 3.3 described, forbids the
limitation in λ̈ the approach to change the phasespace by using a λ, which
changes according to the periodic motion of a particle. So a different approach
must be done. Imaginable would be the slow change from one periodic system
to another one, e.g. starting with a single well potential and ending with an
asymmetric double well potential. Perhaps additional examples does not create
a mathematical proof for the adiabatic invariance of the phasespace, but they
help to understand its limitations and this helps to develop such a proof.

On the more practical side is shown, that a energy depending period duration
helps to keep the phasespace for most particles constant. On the other side,
when the period duration is constant for every energy, like in the harmonic
oscillator, then a potential, which growth is connected to the period duration,
can change the phasespace even in the adiabatic limes.
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5 Attachment

5.1 Mathematical Proof:F1(q = 0, t) = 0

Here is proven, that the force F1(q = 0, t) is zero besides the fact, that the
derivation of ω(q, t) diverges at q = 0. The potential V1(q, t), which causes
F1(q, t), is:

V1(q, t) =
1

2
ω2(q, t)q2 with ω(q, t) =

{
ωr(t) if x > 0
ωl(t) if x ≤ 0

(5.1)

The definition of F1(q = 0, t) is:

−F1(q = 0, t) = lim
q→0

(
∂V1(q, t)

∂q
) (5.2)

= lim
q→0

( lim
δq→0

ω2(q + δq, t)(δq + q)2 − ω2(q, t)q2

2δq
) (5.3)

= lim
q→0

( lim
δq→0

ω2(q + δq, t)(q2 + 2qδq)− ω2(q, t)q2

2δq
) (5.4)

In the limes of δq and q you have no correlation between δq and q, so you need
differ in every possible case. Only when in every case the term converges to
zero, then the force F1(q = 0, t) is zero.

1.Case : δq > 0 and q > 0 (5.5)

lim
q→0

( lim
δq→0

ω2
r (t)(q2 + 2qδq)− ω2

r (t)q2

2δq
) = 0 (5.6)

2.Case : δq < 0 and q < 0 (5.7)

lim
q→0

( lim
δq→0

ω2
l (t)(q2 + 2qδq)− ω2

l (t)q2

2δq
) = 0 (5.8)

3.Case : δq < 0, q > 0 and |q| ≥ |δq| (5.9)

lim
q→0

( lim
δq→0

ω2
r (t)(q2 + 2qδq)− ω2

r (t)q2

2δq
) = 0 (5.10)

4.Case : δq < 0, q > 0 and |q| < |δq| (5.11)

| lim
q→0

( lim
δq→0

ω2
l (t)(q2 + 2qδq)− ω2

r (t)q2

2δq
)| = (5.12)

| lim
q→0

( lim
δq→0

(ω2
l (t)− ω2

r (t))q2

2δq
)| ≤ (5.13)

| lim
q→0

(ω2
l (t)− ω2

r (t))q2

2q
| = 0 (5.14)
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5 Attachment

5.Case : δq > 0, q < 0 and |q| > |δq| (5.15)

lim
q→0

( lim
δq→0

ω2
l (t)(q2 + 2qδq)− ω2

l (t)q2

2δq
) = 0 (5.16)

6.Case : δq > 0, q < 0 and |q| ≤ |δq| (5.17)

| lim
q→0

( lim
δq→0

ω2
r (t)(q2 + 2qδq)− ω2

l (t)q2

2δq
)| = (5.18)

| lim
q→0

( lim
δq→0

(ω2
r (t)− ω2

l (t))q2

2δq
)| ≤ (5.19)

| lim
q→0

(ω2
r (t)− ω2

l (t))q2

2q
| = 0 (5.20)

So in every possible case the term converge to zero, which means, that the
force F1(q = 0, t) is really zero.

5.2 mathematical proof: T = ∂A
∂E

This is the derivation of the equation, which calculates the period duration
out of the phasespace. A punctual particle is caught in a potential and so it
performs a periodic motion with a constant energy E. The Hamiltonian of the
system is:

H(p, q) =
p2

2
+ V (q) = E = const. (5.21)

For simplicity the mass of the particle is set to 1. The phasespace A is:

A(E) = 2

qmax(E)∫
qmin(E)

p(q, E)dq = 2

qmax(E)∫
qmin(E)

√
2(E − V (q))dq (5.22)

The locations qmin and qmax are the turning points of the periodic motion and
so the energy of the particle is at these two points completely transform in
potential energy. With the following equation the derivation of the phasespace
with respect to the energy can be easily calculated:

∂y

b(y)∫
a(y)

f(x, y)dx =

b(y)∫
a(y)

∂yf(x, y)dx+
∂b(y)

∂y
f(b(y), y)− ∂a(y)

∂y
f(a(y), y) (5.23)

The position of the turning points qmin and qmax also depend on the energy, so
forth these must also be derivated with respect to E.

∂A(E)

∂E
5.23
= 2

qmax(E)∫
qmin(E)

∂E
√

2(E − V (q))dq+

26



5.2 mathematical proof: T = ∂A
∂E

+
∂qmax(E)

∂E

√
2(E − V (qmax))− ∂qmin(E)

∂E

√
2(E − V (qmin)) (5.24)

= 2

qmax(E)∫
qmin(E)

1√
2(E − V (q))

dq +
∂qmax(E)

∂E

√
2(E − E)− ∂qmin(E)

∂E

√
2(E − E)

(5.25)
Here is the momentum p = dq

dt
. With this the integration over the position q

can be replaced by a integration over time t: dq
p

= dt

= 2

qmax(E)∫
qmin(E)

1

p
dq = 2

t(qmax)∫
t(qmin)

dt = T (5.26)
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